

Kegata Ltd.

Residential Development, Rosshill, Galway Report on Civil Works Planning Stage

Residential Development, Rosshill, Galway

Report on Civil Works Planning Stage

Document Control Sheet								
Document Reference 10690/TR02								
Report Status	Report Status PLANNING							
Report Date	June 2019							
Current Revision	В							
Client:	Alber Homes Ltd							
Client Address:	1 st Floor,							
	Fairgreen House,							
	Fairgreen Rd,							
	Galway,							
	H91 AXK8							
Project Number	10690							

Galway Office	Dublin Office	Castlebar Office	London Office
Fairgreen House,	Block 10-4,	Market Square,	17 Bowling Green Lane,
Fairgreen Road,	Blanchardstown	Castlebar,	Clerkenwell,
Galway,	Corporate Park,	Mayo,	London,
H91 AXK8,	Dublin 15,	F23 Y427,	EC1R 0QB,
Ireland.	D15 X98N,	Ireland.	United Kingdom.
	Ireland.		-
Tel: +353 (0)91 565 211	Tel: +353 (0)1 803 0406	Tel: +353 (0)94 902 1401	Tel: +44 (0)203 915 6301
	·		

Revision	Description	Author:	Date	Reviewed By:	Date	Authorised by:	Date
D01	Draft Planning Issue	RD	02/07/2019	BH	03/07/2019	RD	03/07/2019
D02	Draft Planning Issue	RD	16/07/2019	BH	16/07/2019	BH	16/07/2019
D03	Update after IW CoF Received	RD	01/08/2019	ВН	01/08/2019	ВН	01/08/2019
Α	Planning Issue	RD	05/12/2019	BH	05/12/2019	BH	05/12/2019
В	Planning Issue – Minor Revision	RD	12/12/2019	ВН	12/12/2019	ВН	13/12/2019

TOBIN Consulting Engineers

Disclaimer

This Document is Copyright of TOBIN Consulting Engineers Limited. This document and its contents have been prepared for the sole use of our Client. No liability is accepted by TOBIN Consulting Engineers Limited for the use of this report, or its contents for any other use than for which it was prepared.

Table of Contents

1	Introduction	4
1.1	Wastewater Drainage System Overview	5
1.2	Storm Drainage System Overview	5
2	Wastewater Drainage Design	6
2.1	Introduction	6
2.2	Loading rates	6
2.3	Wastewater Discharge	6
2.4	Pumping Station	7
3	Stormwater Drainage Design	7
3.1	Introduction	7
3.2	Soakaway Design	8
4	Watermain	8
5	Fire fighting flows	9
6	CONCLUSION	9

Table of Figures

Figure 1.1 – Site Location	4
Figure 1.2 - Proposed Site Layout	5

1 INTRODUCTION

TOBIN Consulting Engineers were appointed in May 2019 to provide engineering consultancy services for the proposed residential development at Rosshill, in Galway City (Figure 1.1 & Figure 1.2).

This report has been prepared to detail the Civil Works Planning submission element of a residential development at Rosshill, Co. Galway. It should be read in conjunction with the foul and storm design drawings as outlined and noted herein.

This report details the foul and storm drainage design and the water main details for the development. The residential development consists of 342no. units comprising 185no. houses and 157no. apartments, including a ground-floor community space, office, cafe and retail unit. A two-storey childcare facility. The provision of public realm landscaping including shared public open space and play areas, public art, public lighting, resident and visitor parking including car rental bays, electric vehicle charging points and bike rental spaces. Pedestrian, cyclist and vehicular links throughout the development. Access road and junction improvements at Rosshill Road/Old Dublin Road.

It is proposed that the wastewater will flow via gravity to a pumping station to the north west of the site and discharge via rising main to an existing IW pumping station located at Merlin Park. The gravity sewers have been sized sufficiently to cater for future possible development to the south of the site. This report outlines the P.E.'s and wastewater flow rate. Details of storm design and water main are also presented within the report.

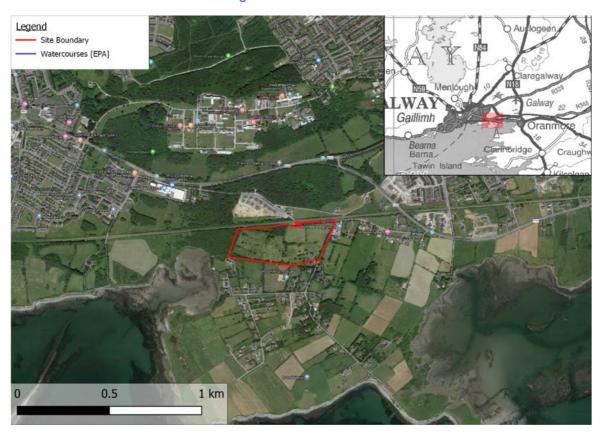


Figure 1.1 - Site Location

Figure 1.2 - Proposed Site Layout

1.1 Wastewater Drainage System Overview

Details of the Foul Sewer can be found in Appendix B of this document and on Drawing No. 10690-2002 & 10690-2003. It is proposed that all pipes will be thermoplastic structured wall pipes. The maximum pipe diameter is to be $225 \, \text{mm}$, with a maximum and minimum gradient of $1/20 \, \text{and} \, 1/200$. All velocities at said gradients fall within the limits of $0.75 \, \text{and} \, 3 \, \text{m/sec}$ as set out in "Recommendations for Site Development Works" as published by the Department of Environment.

1.2 Storm Drainage System Overview

The storm water drainage design has been designed to cater for all surface water runoff from all hard surfaces in the proposed development including roadways, roofs etc. All stormwater generated on site from roadways and roofs will discharge via Oil/Petrol Interceptor to one of 12 no. proposed soakaways which are strategically situated throughout the site. The stormwater will soak away through the underlying fractured rock/boulders. The soakaways shall be constructed of a cellular storage unit providing 95% porosity or stone filled soakaway providing 40% void ratio. These will also attenuate storm water during and post storm events prior to infiltrating through the underlying fractured rock/boulders.

The north west corner of the development is prone to occasional pluvial flooding and therefore there is additional storage provided by means of an open attenuation in the form of a swale. This area, as noted in the FRA, will remain at lower ground level (existing) which is circa 7.0 – 7.5m OD with building and roads in the vicinity being filled and constructed to 9.0m OD – 9.5m OD.

All soakaways are designed to accommodate a 1 in 100 year storm event throughout the site. The networks to the west of the site are designed to accommodate the 1 in 100 year storm event with an overflow being provided which will allow any additional volume of storm water to convey to the naturally forming swale to the north of the site. This will allow for a 1 in 1000 year storm event to be catered for as noted in the FRA.

Details of the soakaways are shown in Appendix C and located on Drawings.

The maximum pipe diameter is to be 450mm, with a maximum and minimum gradient of 1/35 and 1/300. All velocities at said gradients fall within the limits of 0.75 and 3m/sec as set out in "Recommendations for Site Development Works" as published by the Department of Environment.

2 WASTEWATER DRAINAGE DESIGN

2.1 Introduction

The pipework for the drainage system has been designed to provide for six times the dry weather flow in accordance with the Recommendations for Site Development Works as published by the Department of the Environment and Local Government and to Irish Water Code of practice and standard details. The design calculations are displayed in Appendix A. The input reference no., manhole upstream, manhole downstream, length of pipe, population equivalent, size, invert upstream (A), invert downstream (B), resulting gradient, flow rate and capacity of each foul sewer pipe within the network are tabulated in the design calculations.

2.2 Loading rates

An average rate of 2.7 P.E. per dwelling has been taken for the development to account for the varying unit occupancies. The occupancy per dwelling figures have been obtained from the Irish Water Codes of Practice as per Wastewater Code of Practice, Appendix C – Gravity Sewer Design Requirements, section 1.2.1 Housing Density & Occupancy.

150 ltr per head per day has been taken into account for the sewer design as per Irish Water Code of Practice for Wastewater Infrastructure - section 3.6 Hydraulic Design for Gravity Sewers. The foul sewer design has been designed using Microdrainage 2017.1.2 designing software. Results can be found in Appendix B.

A peak flow rate of 6 time the dry weather flow was obtained from as per Wastewater Code of Practice, Appendix C - Gravity Sewer Design Requirements, section 1.2.5. Domestic Wastewater Peaking Factors.

2.3 Wastewater Discharge

It is proposed to discharge via gravity to a pumping station located in the North-West of the site and then discharge via rising main to the existing Merlin Park pumping station. Merlin Park pumping station is currently on Irish Water Capital Infrastructure list of proposed upgrade works – Refer to Section 9.7 *Water Services* of the Galway City Development Plan 2017-2023.

Irish Water have confirmed that the proposed phase 1 and phase 2 of the development can be accommodated under the current arrangement at Merlin Park with the remaining phases being accommodated once the completion of the capital works on the Merlin Park pumping station have been carried out by 2024. Extensive consultations were held with Irish Water, in a collaborative manner, to arrive at a solution that satisfies both the achievable delivery of the houses (in phases) from the developer with that of the realistic delivery of the required infrastructure at Merlin Park.

It is understood that the proposed upgrade works at Merlin Park pumping station are now at design stage and Irish Water have stated that the timeline for completion of these works, 2024, allows for a planning application process. Refer to the Letter of Feasibility from Irish Water in Appendix G for further details.

The rising main will transverse through the site located within the roads and connect to a previously laid rising main on the Rosshill road previously constructed during the construction of the adjacent development. The Contractor has taken a collaborative approach and has agreed with the developer constructing the adjacent development to the north (PI Ref: 16/228), in consultation with Irish Water, for the developer to lay a rising main and water main within trench to allow for the proposed development. This negates the need for an additional section of trench to be excavated on Rosshill road for this development.

2.4 Pumping Station

A typical detail of the pumping station can be found in Appendix F. The pumping station will be designed in accordance with the requirements set out in the Irish Water specification for wastewater systems IW-CDS-5030-03. The pumping station will be 15m from the boundary of the nearest dwelling as shown on drg. no. 10690-2002

From IW-CDS-5030-03, storage required for pumping station = 24 hr storage for total flow at 600l/dwelling/day

Therefore:

 $342 \times 600 = 205,200 \text{ litres/day}$

An allowance has been made in the calculations for the creche and commercial units equating to the equivalent of 10no. housing units.

Where 10 no. x 600 = 6,000 litres/day

205,200 + 6,000 = 211,200 litres/day

24 hour storage required

Therefore, tank volume required = 211.2 m3 for 24 hour storage

As noted on the Irish Water Confirmation of Feasibility (refer to Appendix G), the pumping station will be required cater for any future development to the south of the proposed lands. This can be achieved by the installation of additional modular storage connected to the existing tank storage and per discussions with Irish Water.

The pumping station layout is illustrated on the site drawing and includes a 4.0m wide pull in area to allow for an occasional tanker or service vehicles to be parked outside the pumping station. It is estimated that tanker movements to the site would be minimal and subject to the operational efficiencies of the pumping station. However, it would be anticipated that no more than 2 - 4 tanker visits would be required per annum.

3 STORMWATER DRAINAGE DESIGN

3.1 Introduction

Storm water drainage design calculations are shown in Appendix B of this report. Detailed design calculations are based on the 100 year return period plus an additional 10% for climate change. As the north west section of the site has shown to be susceptible to occasional pluvial flooding in extreme events, the storm networks on the western section have been designed to a 1 in 1000 year flood event.

This entails that the soakaway being designed to cater for runoff from to 1 in 100 year storm event with excess water generated from a greater storm event conveying, via an overflow arrangement, to the naturally formed and retained swale located along the northern boundary. The swale retains the existing ground level which is approximately 7.2m OD to the formed road level of 9.0m – 9.5m OD.

The soakaways catering for the 1 in 100 year event will retain a combined volume of 343m3 of water (1 in 100 year event) with all additional overflow storm water for up to a 1 in 1000 year event being conveyed to the open swale which will have a capacity of approximately 3,670m3.

The pipe ref. No., manhole No. upstream, manhole No. downstream, length of pipe, ground level at manhole upstream, ground level at manhole downstream, impermeable area for each pipe section, invert level upstream, invert level downstream, gradient, capacity and rate of flow for each pipe section are detailed. Prior to discharge to the soakaways, it is proposed to install oil separators/silt traps at the inlet, thus reducing the amount of debris etc. entering the soakaways. Surface water from hard surfaces in the proposed development including roadways and roofs, as shown on Dwg. No. 10690-2001 & 2003, will flow by gravity to the soakaways. Results of the storm water calculations can be found in Appendix B.

3.2 Soakaway Design

The soakaways are designed to hold water for the largest storage required over a 48 hour storm period with rainfall depths taken for the 100 year return period for sliding durations obtained from Met Eireann. The stormwater discharges to groundwater.

Results of the calculations can be found in Appendix C and details of the soakaways unit are shown on drawings.

4 WATERMAIN

The Watermain has been designed in accordance with Irish Water Code of Practice and standard details.

The water supply required for the proposed development shall be via a 200mm dia watermain as per Irish Water requirements. Similar to the arrangement for the foul rising main, agreements were made with the developer constructing the adjacent residential development and in consultation with Irish Water to install the 200mm watermain within the Rosshill road to the extent of their development (i.e. 200mm watermain was previously constructed during construction of the adjacent development). This will allow the proposed development to be able to connect up to the 200mm watermain on the north side of the railway bridge instead of needing to excavate a new trench up to the R338 (old Dublin Road). Refer to Irish Water Confirmation of Feasibility letter in Appendix G noting the proposed connection location to the 200mm dia watermain just north of the railway bridge.

The watermain arrangement is shown on drawing No. 10690-2004 and 10690-2005. It is proposed to serve to site using a 200mm dia 'spine' watermain down to the main junction in the proposed development. All other branch mains from the 200mm will be 100mm PE. In accordance with Local authority standards, a water meter and Logging Device (Larson Type) are proposed at the connection into the proposed site. A sluice valve, strainer and 200mm Ø by-pass arrangement is also proposed to allow for possible disconnection of water meters by the Local Authority.

5 FIRE FIGHTING FLOWS

In order to meet required fire flow requirements, it is proposed to install a static storage capacity within the site. This is being provided as Irish Water will not guarantee available fire flow within the hydrants located on site. It is proposed to provide an underground storage tank capable of supplying 20 l/s of flow for a 1 hour period. This equates to a minimum volume required for the site of 72,000 litres.

20 I/s is derived from the 'National Guidance Document on the provisions of water for Firefighting – Water UK 3rd Edition'. The tank is located within the grassed area and easily accessible by fire tenders and tankers should they need access. A top up supply for the 150mm dia water main will be provided and a high level overflow will connect back to the main storm drainage for the site.

It is noted that in addition to the static storage tank, a significant volumes of water will still be available from hydrants located throughout the development. Any specific requirements as requested by the local fire authority when applying for the Fire Certification will be incorporated at the detail design stage.

6 CONCLUSION

The Report should be read in conjunction with the associated Drawings, layouts and specifications.

The proposed finish levels of the site generally fall from the south east corner to the north west corner making it ideal for gravity flows without needing to undertake excessive depths. The foul network as detailed herein and as shown on the drainage drawings adequately conveys foul waste to the proposed pumping station located in the north west of the site.

The proposed pumping station located to the north east of the site shall collect the foul waste for the entire development. From this point, the foul waste will be pumped to the existing Merlin Park pumping station. Works underway on the adjacent development to the north included the installation of a foul rising main to the extent of their site. This results in the connection location from the proposed development being required just south of the railway bridge instead of at the Merlin Park pumping station. This will result in an overall reduction in trenches of approximately 1.0km which would otherwise cause disruption.

As noted on the Irish Water Confirmation of Feasibility (refer to Appendix G), the pumping station will be required cater for any future development to the south of the proposed lands. This can be achieved by the installation of additional modular storage connected to the existing tank storage.

However, Irish Water also note in their Code of Practice that for developments in excess of 275 no. properties it may be possible to reduce the requirement for providing 24 hr/storage. Should this go ahead, the reduction in the volume could then be applied requiring little if any additional storage being required to the pumping station at a future stage. The preferred option will be agreed and finalised with Irish Water at detailed design stage.

As per the foul rising main, the 200mm watermain has previously been laid by the adjacent developer which will serve the proposed development with the connection point being located just south of the railway bridge. Irish Water have confirmed feasibility to connect to this 200mm dia water main just south of the railway bridge (refer to Confirmation of Feasibility letter – Appendix G). This will result in the overall reduction in trenching of approximately 540m.

Irish Water have vetted the proposed foul and watermain design for the development and have confirmed acceptance of the design. Refer to the 'Statement of Design Acceptance' in Appendix H

Storm water accumulating within the site is adequately being managed by discharging to the 12 no. soakaway's. this will result in all stormwater being retained and managed ensuring no additional volumes are conveyed to storm or combined sewers or to drains and ditches.

All wastewater and watermain infrastructure has been designed and will be constructed in accordance with Irish Water standard details and relevant codes of practice.

We trust that adequate detail has been provided for Wastewater drainage layout and Storm water drainage layout. Should you require any further detail, we will be happy to meet and supply same, as you may deem appropriate.

APPENDIX A

Stormwater Drainage Design Calculations

TOBIN Consulting Engineers						
Fairgreen House						
Fairgreen Road		4				
Galway		Micco				
Date 11/07/2019 09:51	Designed by Fiontan Gallagher	Drainage				
File STORM DESIGN NETWORK NO	Checked by	Dialilada				
Micro Drainage	Network 2017.1.2					

STORM SEWER DESIGN by the Modified Rational Method

Design Criteria for Storm

Pipe Sizes STANDARD Manhole Sizes STANDARD

FSR Rainfall Model - Scotland and Ireland

Return Period (years) 1 PIMP (%) 100

M5-60 (mm) 16.500 Add Flow / Climate Change (%) 10

Ratio R 0.300 Minimum Backdrop Height (m) 0.200

Maximum Rainfall (mm/hr) 50 Maximum Backdrop Height (m) 1.500

Maximum Time of Concentration (mins) 30 Min Design Depth for Optimisation (m) 1.200

Foul Sewage (1/s/ha) 0.000 Min Vel for Auto Design only (m/s) 1.00

Volumetric Runoff Coeff. 0.900 Min Slope for Optimisation (1:X) 500

Designed with Level Soffits

Network Design Table for Storm

PN	Length	Fall	Slope	I.Area	T.E.	Ba	ase	k	HYD	DIA	Section Type	Auto
	(m)	(m)	(1:X)	(ha)	(mins)	Flow	(1/s)	(mm)	SECT	(mm)		Design
S1.000	30.400	0.507	60.0	0.036	5.00		0.0	0.600	0	225	Pipe/Conduit	ð
S1.001	33.127	0.946	35.0	0.022	0.00		0.0	0.600	0	225	Pipe/Conduit	ē
S1.002	4.100	0.041	100.0	0.000	0.00		0.0	0.600	0	225	Pipe/Conduit	ĕ
S1.003	2.000	0.020	100.0	0.000	0.00		0.0	0.600	0	225	Pipe/Conduit	ĕ
S1.004	2.000	0.007	300.0	0.000	0.00		0.0	0.600	0	225	Pipe/Conduit	
S1.005	2.000	0.007	300.0	0.000	0.00		0.0	0.600	0	225	Pipe/Conduit	
												_

Network Results Table

PN	Rain	T.C.	US/IL	Σ I.Area	ΣΕ	Base	Foul	Add Flow	Vel	Cap	Flow
	(mm/hr)	(mins)	(m)	(ha)	Flow	(l/s)	(1/s)	(1/s)	(m/s)	(1/s)	(1/s)
S1.000	41.50	5.30	15.500	0.036		0.0	0.0	0.5	1.69	67.3	5.3
S1.001	40.78	5.55	14.500	0.058		0.0	0.0	0.8	2.22	88.2	8.5
S1.002	40.63	5.60	13.554	0.058		0.0	0.0	0.8	1.31	52.0	8.5
S1.003	40.56	5.63	13.513	0.058		0.0	0.0	0.8	1.31	52.0	8.5
S1.004	40.43	5.67	13.493	0.058		0.0	0.0	0.8	0.75	29.8	8.5
S1.005	40.31	5.72	13.486	0.058		0.0	0.0	0.8	0.75	29.8	8.5

TOBIN Consulting Engineers		Page 2
Fairgreen House		
Fairgreen Road		
Galway		Micco
Date 11/07/2019 09:51	Designed by Fiontan Gallagher	Drainage
File STORM DESIGN NETWORK NO	Checked by	nialilade
Micro Drainage	Network 2017.1.2	

	Manhole Schedules for Storm													
MH Name	MH CL (m)	MH Depth (m)	MH Connection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diameter (mm)	Backdrop (mm)			
S1	17.200	1.700	Open Manhole	1200	S1.000	15.500	225							
S2	16.450	1.950	Open Manhole	1200	s1.001	14.500	225	s1.000	14.993	225	493			
S3	14.950	1.396	Open Manhole	1200	s1.002	13.554	225	s1.001	13.554	225				
S4	14.950	1.437	Open Manhole	1200	s1.003	13.513	225	S1.002	13.513	225				
S5	14.950	1.457	Open Manhole	1200	s1.004	13.493	225	s1.003	13.493	225				
S6	14.900	1.414	Open Manhole	1200	s1.005	13.486	225	s1.004	13.486	225				
S	14.900	1.421	Open Manhole	0		OUTFALL		S1.005	13.479	225				

TOBIN Consulting Engineers							
Fairgreen House							
Fairgreen Road							
Galway		Micro					
Date 11/07/2019 09:51	Designed by Fiontan Gallagher	Drainage					
File STORM DESIGN NETWORK NO	Checked by	Dialilada					
Micro Drainage	Network 2017.1.2						

PIPELINE SCHEDULES for Storm

<u>Upstream Manhole</u>

PN	Hyd Sect		MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
S1.000	0	225	S1	17.200	15.500	1.475	Open Manhole	1200
S1.001	0	225	S2	16.450	14.500	1.725	Open Manhole	1200
S1.002	0	225	s3	14.950	13.554	1.171	Open Manhole	1200
S1.003	0	225	S4	14.950	13.513	1.212	Open Manhole	1200
S1.004	0	225	S5	14.950	13.493	1.232	Open Manhole	1200
S1.005	0	225	S6	14.900	13.486	1.189	Open Manhole	1200

<u>Downstream Manhole</u>

PN	Length	Slope	MH	C.Level	I.Level	D.Depth	MH	MH DIAM., L*W
	(m)	(1:X)	Name	(m)	(m)	(m)	Connection	(mm)
S1.000	30.400	60.0	S2	16.450	14.993	1.232	Open Manhole	1200
S1.001	33.127	35.0	s3	14.950	13.554	1.171	Open Manhole	1200
S1.002	4.100	100.0	S4	14.950	13.513	1.212	Open Manhole	1200
S1.003	2.000	100.0	S5	14.950	13.493	1.232	Open Manhole	1200
S1.004	2.000	300.0	S6	14.900	13.486	1.189	Open Manhole	1200
S1.005	2.000	300.0	S	14.900	13.479	1.196	Open Manhole	0

Free Flowing Outfall Details for Storm

Outfall	Outfall	c.	Level	I.	Level		Min	D,L	W
Pipe Number	Name		(m)		(m)	I.	Level	(mm)	(mm)
							(111)		

S1.005 S 14.900 13.479 0.000 0 0

Simulation Criteria for Storm

Volumetric Runoff Coeff	0.900	Additional Flow - % of Total Flow	10.000
Areal Reduction Factor	1.000	MADD Factor * 10m3/ha Storage	2.000
Hot Start (mins)	0	Inlet Coeffiecient	0.800
Hot Start Level (mm)	0	Flow per Person per Day (1/per/day)	0.000
Manhole Headloss Coeff (Global)	0.500	Run Time (mins)	60
Foul Sewage per hectare (1/s)	0.000	Output Interval (mins)	1

Number of Input Hydrographs 0 Number of Storage Structures 1 Number of Online Controls 0 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model FSR Ratio R 0.300 Return Period (years) 1 Profile Type Summer Region Scotland and Ireland Cv (Summer) 0.900 M5-60 (mm) 16.500 Cv (Winter) 0.840

TOBIN Consulting Engineers		Page 4
Fairgreen House		
Fairgreen Road		٧
Galway		Micro
Date 11/07/2019 09:51	Designed by Fiontan Gallagher	
File STORM DESIGN NETWORK NO	Checked by	Drainage
Micro Drainage	Network 2017.1.2	

Synthetic Rainfall Details

Storm Duration (mins) 30

TOBIN Consulting Engineers		Page 5
Fairgreen House		
Fairgreen Road		٧
Galway		Micro
Date 11/07/2019 09:51	Designed by Fiontan Gallagher	
File STORM DESIGN NETWORK NO	Checked by	Drainage
Micro Drainage	Network 2017.1.2	

Storage Structures for Storm

Cellular Storage Manhole: S6, DS/PN: S1.005

Invert Level (m) 12.493 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.72000 Porosity 0.40 Infiltration Coefficient Side (m/hr) 0.00000

Depth	(m)	Area	(m²)	Inf.	Area	(m²)	Depth	(m)	Area	(m²)	Inf.	Area	(m²)
	000 200		12.0 12.0			12.0 28.8	1.	.300		0.0			28.8

TOBIN Consulting Engineers		Page 1
Fairgreen House		
Fairgreen Road		4
Galway		Micco
Date 05/12/2019 17:46	Designed by Richard Daly	Designation
File STORM DESIGN NETWORK NO. 2_REV B.MDX	Checked by	Drainage
Micro Drainage	Network 2017.1.2	

STORM SEWER DESIGN by the Modified Rational Method

Design Criteria for Storm

Pipe Sizes STANDARD Manhole Sizes STANDARD

FSR Rainfall Model - Scotland and Ireland

Return Period (years) 1 Foul Sewage (1/s/ha) 0.000 Maximum Backdrop Height (m) 1.500 M5-60 (mm) 16.500 Volumetric Runoff Coeff. 0.900 Min Design Depth for Optimisation (m) 1.200

Ratio R 0.300 PIMP (%) 100 Min Vel for Auto Design only (m/s) 1.00

Maximum Rainfall (mm/hr) 50 Add Flow / Climate Change (%) 10 Min Slope for Optimisation (1:X) 50

Maximum Time of Concentration (mins) 30 Minimum Backdrop Height (m) 0.200

Designed with Level Soffits

Network Design Table for Storm

PN Length Fall Slope I.Area T.E. Base k HYD DIA Section Type Auto (m) (m) (1:X) (ha) (mins) Flow (1/s) (mm) SECT (mm) Design

S1.000 17.500 0.292 60.0 0.056 5.00 0.0 0.600 o 225 Pipe/Conduit

Network Results Table

PN Rain T.C. US/IL Σ I.Area Σ Base Foul Add Flow Vel Cap Flow (mm/hr) (mins) (m) (ha) Flow (1/s) (1/s) (1/s) (m/s) (1/s) (1/s)

S1.000 41.89 5.17 **15.517** 0.056 0.0 0.0 0.8 1.69 67.3 8.4

TOBIN Consulting Engineers		Page 2
Fairgreen House		
Fairgreen Road		
Galway		Micco
Date 05/12/2019 17:46	Designed by Richard Daly	Designation
File STORM DESIGN NETWORK NO. 2_REV B.MDX	Checked by	Drainage
Micro Drainage	Network 2017.1.2	

Network Design Table for Storm

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)	T.E. (mins)		k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
S1.001	30.600	0.306	100.0	0.185	0.00	0.0	0.600	0	225	Pipe/Conduit	d ^a
s2.000	25.700	0.321	80.0	0.031	5.00	0.0	0.600	0	225	Pipe/Conduit	8
S1.002 S1.003	1.880	0.013 0.013		0.000	0.00		0.600 0.600	0		Pipe/Conduit Pipe/Conduit	-
S1.004 S1.005	2.000	0.007 0.007		0.000	0.00		0.600	0		Pipe/Conduit Pipe/Conduit	<u></u>

Network Results Table

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (1/s)		Add Flow (1/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)
S1.001	40.74	5.56	15.225	0.241	0.0	0.0	3.2	1.31	52.0	35.1
S2.000	41.52	5.29	15.175	0.031	0.0	0.0	0.4	1.46	58.2	4.6
S1.002 S1.003 S1.004 S1.005	40.66 40.57 40.46 40.36	5.62 5.66	14.854 14.841 14.753 14.746	0.272 0.272 0.272 0.272	0.0 0.0 0.0	0.0 0.0 0.0	3.6 3.6 3.6 3.6	1.07 1.07 0.90 0.90	42.4 42.4 63.8 63.8	39.5 39.5 39.5 39.5

TOBIN Consulting Engineers		Page 3
Fairgreen House		
Fairgreen Road		4
Galway		Micro
Date 05/12/2019 17:46	Designed by Richard Daly	Desipago
File STORM DESIGN NETWORK NO. 2_REV B.MDX	Checked by	Diamage
Micro Drainage	Network 2017.1.2	'

Manhole Schedules for Storm

MH Name	MH CL (m)	MH Depth (m)	MH Connection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diameter (mm)	Backdrop (mm)
S1	17.100	1.583	Open Manhole	1200	S1.000	15.517	225				
S2	16.650	1.425	Open Manhole	1200	s1.001	15.225	225	s1.000	15.225	225	
S3	16.300	1.125	Open Manhole	1200	s2.000	15.175	225				
S4	16.200	1.346	Open Manhole	1200	s1.002	14.854	225	s1.001	14.919	225	66
								s2.000	14.854	225	
S5	16.200	1.359	Open Manhole	1200	s1.003	14.841	225	S1.002	14.841	225	
S6	16.200	1.447	Open Manhole	1200	S1.004	14.753	300	s1.003	14.828	225	
s7	16.150	1.404	Open Manhole	1200	S1.005	14.746	300	S1.004	14.746	300	
S	16.200	1.460	Open Manhole	0		OUTFALL		S1.005	14.740	300	

TOBIN Consulting Engineers	Page 4		
Fairgreen House			
Fairgreen Road			
Galway		Micro	
Date 05/12/2019 17:46	Designed by Richard Daly		
File STORM DESIGN NETWORK NO. 2_REV B.MDX	Checked by	Drainage	
Micro Drainage	Network 2017.1.2		

PIPELINE SCHEDULES for Storm

Upstream Manhole

PN	Hyd Sect	Diam (mm)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
S1.000	0	225	S1	17.100	15.517	1.358	Open Manhole	1200
S1.001	0	225	S2	16.650	15.225	1.200	Open Manhole	1200
S2.000	0	225	S3	16.300	15.175	0.900	Open Manhole	1200
S1.002	0	225	S4	16.200	14.854	1.121	Open Manhole	1200
S1.003	0	225	S5	16.200	14.841	1.134	Open Manhole	1200
S1.004	0	300	S6	16.200	14.753	1.147	Open Manhole	1200
S1.005	0	300	s7	16.150	14.746	1.104	Open Manhole	1200

Downstream Manhole

PN	Length (m)	Slope (1:X)		C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., (mm)	L*W
S1.000	17.500	60.0	S2	16.650	15.225	1.200	Open Manhole	1:	200
S1.001	30.600	100.0	S4	16.200	14.919	1.056	Open Manhole	1:	200
S2.000	25.700	80.0	S4	16.200	14.854	1.121	Open Manhole	1:	200
S1.002	1.880	150.0	S5	16.200	14.841	1.134	Open Manhole	1:	200
S1.003	2.000	150.0	S6	16.200	14.828	1.147	Open Manhole	1:	200
S1.004	2.000	300.0	s7	16.150	14.746	1.104	Open Manhole	1:	200
S1.005	2.000	300.0	S	16.200	14.740	1.160	Open Manhole		0

TOBIN Consulting Engineers						
Fairgreen House						
Fairgreen Road		4				
Galway		Micro				
Date 05/12/2019 17:46	Designed by Richard Daly	Denimore				
File STORM DESIGN NETWORK NO. 2_REV B.MDX	Checked by	Dramage				
Micro Drainage	Network 2017.1.2					

Simulation Criteria for Storm

0.800	Coeffiecient	Inlet		0.500	Headloss Coeff (Global)	Manhole Hea	0.900	etric Runoff Coeff	Volume
0.000	y (1/per/day)	Person per Dag	Flow per	0.000	ewage per hectare (1/s)	Foul Sewa	1.000	l Reduction Factor	Areal
60	n Time (mins)	Rui		10.000	Flow - % of Total Flow	Additional Fl	0	Hot Start (mins)	
1	terval (mins)	Output In		2.000	actor * 10m3/ha Storage	MADD Fact	0	t Start Level (mm)	Hot.

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 0 Number of Storage Structures 1 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model FSR M5-60 (mm) 16.500 Cv (Summer) 0.900 Return Period (years) 1 Ratio R 0.300 Cv (Winter) 0.840 Region Scotland and Ireland Profile Type Summer Storm Duration (mins) 30

TOBIN Consulting Engineers		Page 1
Fairgreen House		
Fairgreen Road		
Galway		Micro
Date 05/12/2019 17:48	Designed by Richard Daly	Desipage
File Storm Design Network no. 3_Rev B.mdx	Checked by	Diamage
Micro Drainage	Network 2017.1.2	

STORM SEWER DESIGN by the Modified Rational Method

Design Criteria for Storm

Pipe Sizes STANDARD Manhole Sizes STANDARD

FSR Rainfall Model - Scotland and Ireland

Return Period (years) 1 Foul Sewage (1/s/ha) 0.000 Maximum Backdrop Height (m) 1.500 M5-60 (mm) 16.700 Volumetric Runoff Coeff. 0.750 Min Design Depth for Optimisation (m) 1.200

Ratio R 0.300 PIMP (%) 100 Min Vel for Auto Design only (m/s) 1.00

Maximum Rainfall (mm/hr) 50 Add Flow / Climate Change (%) 10 Min Slope for Optimisation (1:X) 50

Maximum Time of Concentration (mins) 30 Minimum Backdrop Height (m) 0.200

Designed with Level Soffits

Network Design Table for Storm

PN Length Fall Slope I.Area T.E. Base k HYD DIA Section Type Auto (m) (m) (1:X) (ha) (mins) Flow (1/s) (mm) SECT (mm) Design

S1.000 41.500 1.186 35.0 0.134 5.00 0.0 0.600 o 225 Pipe/Conduit

Network Results Table

PN Rain T.C. US/IL Σ I.Area Σ Base Foul Add Flow Vel Cap Flow (mm/hr) (mins) (m) (ha) Flow (1/s) (1/s) (1/s) (m/s) (1/s) (1/s)

S1.000 41.98 5.31 18.900 0.134 0.0 0.0 1.5 2.22 88.2 16.8

TOBIN Consulting Engineers		Page 2
Fairgreen House		
Fairgreen Road		9
Galway		Micco
Date 05/12/2019 17:48	Designed by Richard Daly	Designado
File Storm Design Network no. 3_Rev B.mdx	Checked by	Diamage
Micro Drainage	Network 2017.1.2	

Network Design Table for Storm

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)	T.E. (mins)	ase (1/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
S1.001	52.200	1.044	50.0	0.256	0.00	0.0	0.600	0	300	Pipe/Conduit	ð
s2.000	24.000	0.120	200.0	0.041	5.00	0.0	0.600	0	225	Pipe/Conduit	•
S1.002	24.400	0.081	300.0	0.021	0.00	0.0	0.600	0	300	Pipe/Conduit	₫*
s3.000	20.200	0.067	300.0	0.018	5.00	0.0	0.600	0	225	Pipe/Conduit	ď
S1.003	25.600	0.640	40.0	0.152	0.00	0.0	0.600	0	350	Pipe/Conduit	<u>.</u>

Network Results Table

PN	Rain (mm/hr)	T.C.	US/IL (m)		Σ Base Flow (1/s)				Cap (1/s)	Flow (1/s)
S1.001	40.84	5.70	17.525	0.390	0.0	0.0	4.3	2.23	157.5	47.5
S2.000	41.61	5.43	16.775	0.041	0.0	0.0	0.5	0.92	36.6	5.1
S1.002	39.62	6.15	16.481	0.452	0.0	0.0	4.9	0.90	63.8	53.4
S3.000	41.57	5.45	16.525	0.018	0.0	0.0	0.2	0.75	29.8	2.2
S1.003	39.23	6.31	16.333	0.622	0.0	0.0	6.6	2.75	264.6	72.7

TOBIN Consulting Engineers		Page 3
Fairgreen House		
Fairgreen Road		
Galway		Micco
Date 05/12/2019 17:48	Designed by Richard Daly	Designation
File Storm Design Network no. 3_Rev B.mdx	Checked by	Drainage
Micro Drainage	Network 2017.1.2	

Network Design Table for Storm

PN	Length (m)		-	I.Area (ha)				HYD SECT		Section Type	Auto Design
S4.000	33.450	0.112	300.0	0.050	5.00	0.0	0.600	0	225	Pipe/Conduit	o
	5.000 6.500				0.00		0.600 0.600			Pipe/Conduit Pipe/Conduit	

Network Results Table

PN	Rain	T.C.	US/IL	Σ I.Area	Σ Base	Foul	Add Flow	Vel	Cap	Flow
	(mm/hr)	(mins)	(m)	(ha)	Flow (1/s)	(1/s)	(1/s)	(m/s)	(1/s)	(1/s)
S4.000	40.73	5.74	15.425	0.050	0.0	0.0	0.6	0.75	29.8	6.1
S1.004	39.01	6.39	15.189	0.689	0.0	0.0	7.3	1.00	95.8	80.1
S1.005	38.80	6.48	15.172	0.695	0.0	0.0	7.3	1.23	118.5	80.3

TOBIN Consulting Engineers	Page 4	
Fairgreen House		
Fairgreen Road		4
Galway		Micro
Date 05/12/2019 17:48	Designed by Richard Daly	Designation
File Storm Design Network no. 3_Rev B.mdx	Checked by	Diamade
Micro Drainage	Network 2017.1.2	•

Manhole Schedules for Storm

MH Name	MH CL (m)	MH Depth (m)	MH Connection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diameter (mm)	Backdrop (mm)
S1	20.450	1.550	Open Manhole	1200	S1.000	18.900	225				
S3	19.300	1.775	Open Manhole	1200	s1.001	17.525	300	S1.000	17.714	225	114
S4	18.200	1.425	Open Manhole	1200	s2.000	16.775	225				
S5	18.150	1.669	Open Manhole	1200	S1.002	16.481	300	S1.001	16.481	300	
								S2.000	16.655	225	99
S6	17.950	1.425	Open Manhole	1200	s3.000	16.525	225				
s7	18.200	1.867	Open Manhole	1200	s1.003	16.333	350	S1.002	16.400	300	17
								S3.000	16.458	225	
S8	16.850	1.425	Open Manhole	1200	S4.000	15.425	225				
S9	17.100	1.912	Open Manhole	1200	S1.004	15.189	350	S1.003	15.693	350	504
								S4.000	15.314	225	
S10	17.200	2.028	Open Manhole	1200	S1.005	15.172	350	S1.004	15.172	350	
S	17.000	1.861	Open Manhole	0		OUTFALL		S1.005	15.139	350	

TOBIN Consulting Engineers	Page 5	
Fairgreen House		
Fairgreen Road		4
Galway		Micro
Date 05/12/2019 17:48	Designed by Richard Daly	Desipage
File Storm Design Network no. 3_Rev B.mdx	Checked by	Diamage
Micro Drainage	Network 2017.1.2	•

Simulation Criteria for Storm

Volumetric Runoff Coeff	0.750	Manhole Headloss Coeff (Global)	0.500	Inlet Coefficient 0.800
Areal Reduction Factor	1.000	Foul Sewage per hectare (1/s)	0.000	Flow per Person per Day (1/per/day) 0.000
Hot Start (mins)	0	Additional Flow - % of Total Flow	10.000	Run Time (mins) 60
Hot Start Level (mm)	0	MADD Factor * 10m3/ha Storage	2.000	Output Interval (mins) 1

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 0 Number of Storage Structures 1 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model FSR M5-60 (mm) 16.700 Cv (Summer) 0.750 Return Period (years) 1 Ratio R 0.300 Cv (Winter) 0.840 Region Scotland and Ireland Profile Type Summer Storm Duration (mins) 30

TOBIN Consulting Engineers	Page 1	
Fairgreen House		
Fairgreen Road		
Galway		Micro
Date 11/07/2019 09:57	Designed by Fiontan Gallagher	Drainage
File STORM DESIGN NETWORK NO	Checked by	nialliade
Micro Drainage	Network 2017.1.2	

STORM SEWER DESIGN by the Modified Rational Method

Design Criteria for Storm

Pipe Sizes STANDARD Manhole Sizes STANDARD

FSR Rainfall Model - Scotland and Ireland

Return Period (years) 1 PIMP (%) 100

M5-60 (mm) 16.500 Add Flow / Climate Change (%) 10

Ratio R 0.300 Minimum Backdrop Height (m) 0.200

Maximum Rainfall (mm/hr) 50 Maximum Backdrop Height (m) 1.500

Maximum Time of Concentration (mins) 30 Min Design Depth for Optimisation (m) 1.200

Foul Sewage (l/s/ha) 0.000 Min Vel for Auto Design only (m/s) 0.75

Volumetric Runoff Coeff. 0.900 Min Slope for Optimisation (1:X) 500

Designed with Level Soffits

Network Design Table for Storm

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)	T.E. (mins)	ase (1/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
	63.500 29.900		35.0 300.0	0.296 0.054	5.00		0.600	0		Pipe/Conduit Pipe/Conduit	0 0
	49.100 30.600 30.100	1.020	35.0 30.0 149.8	0.174 0.174 0.051	5.00 0.00 0.00	0.0	0.600 0.600 0.600	0 0	300	Pipe/Conduit Pipe/Conduit Pipe/Conduit	0 0
S1.002 S1.003 S1.004	2.450 2.000 2.000		200.0 300.0 300.0	0.000 0.000 0.000	0.00 0.00 0.00	0.0	0.600 0.600 0.600	0 0	400	Pipe/Conduit Pipe/Conduit Pipe/Conduit	6

Network Results Table

PN	Rain	T.C.	US/IL	Σ I.Area	Σ Base	Foul	Add Flow	Vel	Cap	Flow
	(mm/hr)	(mins)	(m)	(ha)	Flow (1/s)	(1/s)	(1/s)	(m/s)	(1/s)	(1/s)
S1.000	40.98	5.48	16.475	0.296	0.0	0.0	3.9	2.22	88.2	43.4
S1.001	39.46	6.03	14.562	0.350	0.0	0.0	4.5	0.90	63.8	49.4
s2.000	41.30	5.37	17.175	0.174	0.0	0.0	2.3	2.22	88.2	25.7
S2.001	40.79	5.55	15.555	0.348	0.0	0.0	4.6	2.88	203.7	50.7
S2.002	39.80	5.90	14.485	0.399	0.0	0.0	5.2	1.41	136.1	56.8
S1.002	39.38	6.06	14.284	0.749	0.0	0.0	9.6	1.22	117.6	105.4
S1.003	39.30	6.09	14.222	0.749	0.0	0.0	9.6	1.08	136.3	105.4
S1.004	39.22	6.12	14.215	0.749	0.0	0.0	9.6	1.08	136.3	105.4

TOBIN Consulting Engineers	Page 2	
Fairgreen House		
Fairgreen Road		
Galway		Micro
Date 11/07/2019 09:57	Designed by Fiontan Gallagher	Drainage
File STORM DESIGN NETWORK NO	Checked by	nanaye
Micro Drainage	Network 2017.1.2	

Manhole Schedules for Storm

MH Name	MH CL (m)	MH Depth (m)	MH Connection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diameter (mm)	Backdrop (mm)
S1	17.900	1.425	Open Manhole	1200	S1.000	16.475	225				
S2	16.100	1.538	Open Manhole	1200	S1.001	14.562	300	S1.000	14.661	225	24
s3	18.800	1.625	Open Manhole	1200	s2.000	17.175	225				
S4	17.250	1.695	Open Manhole	1200	S2.001	15.555	300	s2.000	15.772	225	142
S4	16.000	1.515	Open Manhole	1200	s2.002	14.485	350	S2.001	14.535	300	
S5	16.150	1.866	Open Manhole	1200	s1.002	14.284	350	s1.001	14.462	300	128
								s2.002	14.284	350	
s7	16.150	1.928	Open Manhole	1350	s1.003	14.222	400	s1.002	14.272	350	
S8	16.150	1.935	Open Manhole	1350	S1.004	14.215	400	s1.003	14.215	400	
S	16.150	1.942	Open Manhole	0		OUTFALL		S1.004	14.208	400	

TOBIN Consulting Engineers	Page 3	
Fairgreen House		
Fairgreen Road		
Galway		- Micro
Date 11/07/2019 09:57	Designed by Fiontan Gallagher	Drainage
File STORM DESIGN NETWORK NO	Checked by	nialilade
Micro Drainage	Network 2017.1.2	

PIPELINE SCHEDULES for Storm

<u>Upstream Manhole</u>

PN	Hyd Sect		MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
S1.000	0	225	S1	17.900	16.475	1.200	Open Manhole	1200
S1.001	0	300	S2	16.100	14.562	1.238	Open Manhole	1200
S2.000	0	225	s3	18.800	17.175	1.400	Open Manhole	1200
S2.001	0	300	S4	17.250	15.555	1.395	Open Manhole	1200
S2.002	0	350	S4	16.000	14.485	1.165	Open Manhole	1200
S1.002	0	350	S.5	16.150	14.284	1 516	Open Manhole	1200
S1.002	0	400	S7	16.150	14.222		Open Manhole	1350
S1.003	0	400	S8	16.150	14.215		Open Manhole	1350

<u>Downstream Manhole</u>

PN	Length	Slope	MH	C.Level	I.Level	D.Depth	MH	MH DIAM., L*W
	(m)	(1:X)	Name	(m)	(m)	(m)	Connection	(mm)
S1.000	63.500	35.0	S2	16.100	14.661	1 214	Open Manhole	1200
	29.900		S5	16.150	14.462		Open Manhole	
							_	
S2.000	49.100	35.0	S4	17.250	15.772	1.253	Open Manhole	1200
S2.001	30.600	30.0	S4	16.000	14.535	1.165	Open Manhole	1200
S2.002	30.100	149.8	S5	16.150	14.284	1.516	Open Manhole	1200
S1.002	2.450	200.0	s7	16.150	14.272	1.528	Open Manhole	1350
S1.003	2.000	300.0	S8	16.150	14.215	1.535	Open Manhole	1350
S1.004	2.000	300.0	S	16.150	14.208	1.542	Open Manhole	0

Free Flowing Outfall Details for Storm

Out	fall	Outfall	c.	Level	I.	Level		Min	D,L	W
Pipe	Number	Name		(m)		(m)	I.	Level	(mm)	(mm)
								(m)		

S1.004 S 16.150 14.208 0.000 0 0

Simulation Criteria for Storm

Volumetric Runoff Coeff	0.900	Additional Flow - % of Total Flow	10.000
Areal Reduction Factor	1.000	MADD Factor * 10m3/ha Storage	2.000
Hot Start (mins)	0	Inlet Coefficcient	0.800
Hot Start Level (mm)	0	Flow per Person per Day (1/per/day)	0.000
Manhole Headloss Coeff (Global)	0.500	Run Time (mins)	60
Foul Sewage per hectare (1/s)	0.000	Output Interval (mins)	1

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Online Controls 0 Number of Storage Structures 1

TOBIN Consulting Engineers		Page 4
Fairgreen House		
Fairgreen Road		4
Galway		Micro
Date 11/07/2019 09:57	Designed by Fiontan Gallagher	Drainage
File STORM DESIGN NETWORK NO	Checked by	Dialilade
Micro Drainage	Network 2017.1.2	

Simulation Criteria for Storm

Number of Time/Area Diagrams 0 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model	FSR	Profile Type Summer
Return Period (years)	1	Cv (Summer) 0.900
Region	Scotland and Ireland	Cv (Winter) 0.840
M5-60 (mm)	16.500	Storm Duration (mins) 30
Ratio R	0.300	

TOBIN Consulting Engineers		Page 5
Fairgreen House		
Fairgreen Road		٧
Galway		Micro
Date 11/07/2019 09:57	Designed by Fiontan Gallagher	
File STORM DESIGN NETWORK NO	Checked by	Drainage
Micro Drainage	Network 2017.1.2	

Storage Structures for Storm

Cellular Storage Manhole: S8, DS/PN: S1.004

Invert Level (m) 13.075 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 1.02136 Porosity 0.40 Infiltration Coefficient Side (m/hr) 0.00000

Depth (m)	Area (m²)	Inf. Area	(m²) Depth	(m) Area	(m²)	Inf.	Area	(m²)
0.000 1.200			1.816.8	300	0.0		3	16.8

TOBIN Consulting Engineers		Page 1
Fairgreen House		
Fairgreen Road		
Galway		Micro
Date 11/07/2019 09:58	Designed by Fiontan Gallagher	Drainage
File STORM DESIGN NETWORK NO	Checked by	Dialitade
Micro Drainage	Network 2017.1.2	

STORM SEWER DESIGN by the Modified Rational Method

Design Criteria for Storm

Pipe Sizes STANDARD Manhole Sizes STANDARD

FSR Rainfall Model - Scotland and Ireland

Return Period (years) 1 PIMP (%) 100

M5-60 (mm) 16.500 Add Flow / Climate Change (%) 10

Ratio R 0.300 Minimum Backdrop Height (m) 0.200

Maximum Rainfall (mm/hr) 50 Maximum Backdrop Height (m) 1.500

Maximum Time of Concentration (mins) 30 Min Design Depth for Optimisation (m) 1.200

Foul Sewage (l/s/ha) 0.000 Min Vel for Auto Design only (m/s) 0.75

Volumetric Runoff Coeff. 0.900 Min Slope for Optimisation (1:X) 500

Designed with Level Soffits

Network Design Table for Storm

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)		Base Flow (1/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
s1.000	74.000	1.850	40.0	0.268	5.00	0.0	0.600	0	225	Pipe/Conduit	•
s2.000	22.800	0.253	90.0	0.076	5.00	0.0	0.600	0	225	Pipe/Conduit	ð
S1.001	14.000	0.400	35.0	0.010	0.00	0.0	0.600	0	225	Pipe/Conduit	♂
s3.000	31.500	0.105	300.0	0.090	5.00	0.0	0.600	0	225	Pipe/Conduit	♂
S1.002 S1.003 S1.004	8.100 2.000 2.000	0.007	300.0 300.0 300.0	0.000 0.000 0.000	0.00 0.00 0.00	0.0	0.600 0.600 0.600	0 0	300	Pipe/Conduit Pipe/Conduit Pipe/Conduit	\$ \$

Network Results Table

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (1/s)		Add Flow (1/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)	
S1.000	40.65	5.59	19.375	0.268	0.0	0.0	3.5	2.07	82.5	38.9	
S2.000	41.58	5.28	18.075	0.076	0.0	0.0	1.0	1.38	54.8	11.3	
S1.001	40.35	5.70	17.525	0.354	0.0	0.0	4.6	2.22	88.2	51.1	
s3.000	40.35	5.70	16.825	0.090	0.0	0.0	1.2	0.75	29.8	13.0	
S1.002 S1.003 S1.004	39.94 39.84 39.74	5.89	16.645 16.618 16.611	0.444 0.444 0.444	0.0 0.0 0.0	0.0 0.0 0.0	5.8 5.8 5.8	0.90 0.90 0.90	63.8 63.8 63.8	63.4 63.4 63.4	

TOBIN Consulting Engineers							
Fairgreen House							
Fairgreen Road							
Galway		Micro					
Date 11/07/2019 09:58	Designed by Fiontan Gallagher	Drainage					
File STORM DESIGN NETWORK NO	Checked by	nanaye					
Micro Drainage	Network 2017.1.2						

Manhole Schedules for Storm

MH Name	MH CL (m)	MH Depth (m)	MH Connection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diameter (mm)	Backdrop (mm)
S1	20.800	1.425	Open Manhole	1200	s1.000	19.375	225				
S2	19.500	1.425	Open Manhole	1200	s2.000	18.075	225				
S3	19.250	1.725	Open Manhole	1200	S1.001	17.525	225	s1.000	17.525	225	
								s2.000	17.822	225	297
S4	18.250	1.425	Open Manhole	1200	s3.000	16.825	225				
S5	18.550	1.905	Open Manhole	1200	s1.002	16.645	300	s1.001	17.125	225	405
								s3.000	16.720	225	
S6	18.550	1.932	Open Manhole	1200	s1.003	16.618	300	s1.002	16.618	300	
s7	18.550	1.939	Open Manhole	1200	S1.004	16.611	300	s1.003	16.611	300	
S	18.550	1.945	Open Manhole	0		OUTFALL		S1.004	16.605	300	

TOBIN Consulting Engineers	Page 3	
Fairgreen House		
Fairgreen Road		4
Galway		Micco
Date 11/07/2019 09:58	Designed by Fiontan Gallagher	Desinado
File STORM DESIGN NETWORK NO	Checked by	Drainage
Micro Drainage	Network 2017.1.2	

PIPELINE SCHEDULES for Storm

<u>Upstream Manhole</u>

PN	Hyd	Diam	MH	C.Level	I.Level	D.Depth	MH	MH DIAM., L*W
	Sect	(mm)	Name	(m)	(m)	(m)	Connection	(mm)
S1.000	0	225	S1	20.800	19.375	1.200	Open Manhole	1200
s2.000	0	225	S2	19.500	18.075	1.200	Open Manhole	1200
S1.001	0	225	s3	19.250	17.525	1.500	Open Manhole	1200
s3.000	0	225	S4	18.250	16.825	1.200	Open Manhole	1200
S1.002	0	300	S5	18.550	16.645	1.605	Open Manhole	1200
S1.003	0	300	S6	18.550	16.618	1.632	Open Manhole	1200
S1.004	0	300	s7	18.550	16.611	1.639	Open Manhole	1200

<u>Downstream Manhole</u>

PN	Length (m)	Slope (1:X)			I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
s1.000	74.000	40.0	s3	19.250	17.525	1.500	Open Manhole	1200
s2.000	22.800	90.0	s3	19.250	17.822	1.203	Open Manhole	1200
S1.001	14.000	35.0	S5	18.550	17.125	1.200	Open Manhole	1200
s3.000	31.500	300.0	S5	18.550	16.720	1.605	Open Manhole	1200
S1.002	8.100	300.0	S6	18.550	16.618	1.632	Open Manhole	1200
S1.003	2.000	300.0	s7	18.550	16.611	1.639	Open Manhole	1200
S1.004	2.000	300.0	S	18.550	16.605	1.645	Open Manhole	0

Free Flowing Outfall Details for Storm

Outfall		Outfall	c.	Level	I.	Level		Min	D,L	W	
Pipe	Number	Name		(m)		(m)	I.	Level	(mm)	(mm)	
								(m)			
	S1.004	S		18.550		16.605		0.000	0	C)

TOBIN Consulting Engineers					
Fairgreen House					
Fairgreen Road					
Galway		Micro			
Date 11/07/2019 09:58	Designed by Fiontan Gallagher	Drainage			
File STORM DESIGN NETWORK NO	Checked by	Dialilade			
Micro Drainage	Network 2017.1.2				

Simulation Criteria for Storm

Volumetric Runoff Coeff 0.900 Additional Flow - % of Total Flow 10.000
Areal Reduction Factor 1.000 MADD Factor * 10m³/ha Storage 2.000
Hot Start (mins) 0 Inlet Coefficient 0.800
Hot Start Level (mm) 0 Flow per Person per Day (1/per/day) 0.000
Manhole Headloss Coeff (Global) 0.500 Run Time (mins) 60
Foul Sewage per hectare (1/s) 0.000 Output Interval (mins) 1

Number of Input Hydrographs 0 Number of Storage Structures 1 Number of Online Controls 0 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model	FSR	Profile Type Summer
Return Period (years)	1	Cv (Summer) 0.900
Region	Scotland and Ireland	Cv (Winter) 0.840
M5-60 (mm)	16.500	Storm Duration (mins) 30
Ratio R	0.300	

TOBIN Consulting Engineers		Page 5
Fairgreen House		
Fairgreen Road		٧
Galway		Micro
Date 11/07/2019 09:58	Designed by Fiontan Gallagher	
File STORM DESIGN NETWORK NO	Checked by	Drainage
Micro Drainage	Network 2017.1.2	

Storage Structures for Storm

Cellular Storage Manhole: S7, DS/PN: S1.004

Invert Level (m) 15.420 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.42800 Porosity 0.40 Infiltration Coefficient Side (m/hr) 0.00000

Depth	(m)	Area	(m²)	Inf.	Area	(m²)	Depth	(m)	Area	(m²)	Inf.	Area	(m²)
0.	000	1	95.0		1	95.0	1.	.300		0.0		2	62.2
1.	200	1	95.0		2	262.2							

TOBIN Consulting Engineers		Page 1
Fairgreen House		
Fairgreen Road		
Galway		Micro
Date 11/07/2019 09:59	Designed by Fiontan Gallagher	
File STORM DESIGN NETWORK NO	Checked by	Drainage
Micro Drainage	Network 2017.1.2	

STORM SEWER DESIGN by the Modified Rational Method

Design Criteria for Storm

Pipe Sizes STANDARD Manhole Sizes STANDARD

FSR Rainfall Model - Scotland and Ireland

Return Period (years) 1 PIMP (%) 100

M5-60 (mm) 16.500 Add Flow / Climate Change (%) 10

Ratio R 0.300 Minimum Backdrop Height (m) 0.200

Maximum Rainfall (mm/hr) 50 Maximum Backdrop Height (m) 1.500

Maximum Time of Concentration (mins) 30 Min Design Depth for Optimisation (m) 1.200

Foul Sewage (l/s/ha) 0.000 Min Vel for Auto Design only (m/s) 0.75

Volumetric Runoff Coeff. 0.900 Min Slope for Optimisation (1:X) 500

Designed with Level Soffits

Network Design Table for Storm

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)		Base Flow (1/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
S1.000	51.950	1.154	45.0	0.220	5.00	0.0	0.600	0	300	Pipe/Conduit	ð
\$2.000 \$2.001	14.700 9.200	0.067 0.133	219.4 69.1	0.046	5.00		0.600	0		Pipe/Conduit Pipe/Conduit	€
s1.001	27.050	0.773	35.0	0.034	0.00	0.0	0.600	0	300	Pipe/Conduit	₫*
s3.001	33.600 26.450 26.450	0.756		0.176 0.176 0.030	5.00 0.00 0.00		0.600 0.600 0.600	0 0	300	Pipe/Conduit Pipe/Conduit Pipe/Conduit	6
S1.002 S1.003		0.017 0.007	194.1 300.0	0.000	0.00		0.600	0		Pipe/Conduit Pipe/Conduit	•

Network Results Table

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (1/s)		Add Flow (1/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)	
S1.000	41.30	5.37	19.125	0.220	0.0	0.0	3.0	2.35	166.1	32.5	
S2.000 S2.001	41.71 41.47		18.075 18.008	0.046 0.092	0.0	0.0	0.6	1.06 1.89	74.7 133.9	6.9 13.6	
S1.001	40.81	5.54	17.875	0.346	0.0	0.0	4.6	2.67	188.5	50.5	
\$3.000 \$3.001 \$3.002	41.59 41.10 40.22	5.44	18.400 17.300 16.494	0.176 0.352 0.382	0.0 0.0 0.0	0.0 0.0 0.0	2.4 4.7 5.0		82.5 188.5 135.9	26.2 51.7 54.9	
S1.002 S1.003	40.11		16.268 16.251	0.728 0.728	0.0 0.0	0.0	9.5 9.5		169.8 136.3		

TOBIN Consulting Engineers		Page 2
Fairgreen House		
Fairgreen Road		4
Galway		Micco
Date 11/07/2019 09:59	Designed by Fiontan Gallagher	Drainage
File STORM DESIGN NETWORK NO	Checked by	nanaye
Micro Drainage	Network 2017.1.2	

Network Design Table for Storm

PN Length Fall Slope I.Area T.E. Base k HYD DIA Section Type Auto (m) (m) (1:X) (ha) (mins) Flow (1/s) (mm) SECT (mm) Design

\$1.004 2.000 0.007 300.0 0.000 0.00 0.0 0.600 o 400 Pipe/Conduit

Network Results Table

PN Rain T.C. US/IL Σ I.Area Σ Base Foul Add Flow Vel Cap Flow (mm/hr) (mins) (m) (ha) Flow (1/s) (1/s) (m/s) (1/s) (1/s)

TOBIN Consulting Engineers		Page 3
Fairgreen House		
Fairgreen Road		
Galway		Micro
Date 11/07/2019 09:59	Designed by Fiontan Gallagher	Drainage
File STORM DESIGN NETWORK NO	Checked by	nialilade
Micro Drainage	Network 2017.1.2	

Manhole Schedules for Storm

MH Name	MH CL (m)	MH Depth (m)	MH Connect		MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diameter	Backdrop
S1	20.550	1.425	Open Mar	nhole	1200	S1.000	19.125	300				
s2	19.500	1.425	Open Mar	nhole	1200	s2.000	18.075	300				
S3	19.450	1.442	Open Mar	nhole	1200	s2.001	18.008	300	s2.000	18.008	300	
s3	19.450	1.575	Open Mar	nhole	1200	s1.001	17.875	300	s1.000	17.971	300	96
									s2.001	17.875	300)
S4	20.000	1.600	Open Mar	nhole	1200	s3.000	18.400	225				
S5	19.000	1.700	Open Mar	nhole	1200	s3.001	17.300	300	s3.000	17.560	225	185
S6	18.000	1.506	Open Mar	nhole	1200	s3.002	16.494	350	s3.001	16.544	300)
S8	18.600	2.332	Open Mar	nhole	1350	S1.002	16.268	400	S1.001	17.102	300	734
									s3.002	16.318	350)
S9	18.600	2.349	Open Mar	nhole	1350	s1.003	16.251	400	S1.002	16.251	400)
S10	18.600	2.356	Open Mar	nhole	1350	S1.004	16.244	400	s1.003	16.244	400)
S	18.600	2.362	Open Mar	nhole	0		OUTFALL		S1.004	16.238	400	

TOBIN Consulting Engineers		Page 4
Fairgreen House		
Fairgreen Road		4
Galway		Micro
Date 11/07/2019 09:59	Designed by Fiontan Gallagher	Drainage
File STORM DESIGN NETWORK NO	Checked by	nanaye
Micro Drainage	Network 2017.1.2	

PIPELINE SCHEDULES for Storm

<u>Upstream Manhole</u>

PN	-	Diam (mm)		C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
	sect	(111111)	Name	(111)	(111)	(111)	Connection	(111111)
S1.000	0	300	S1	20.550	19.125	1.125	Open Manhole	1200
S2.000	0	300	s2	19.500	18.075	1.125	Open Manhole	1200
S2.001	0	300	s3	19.450	18.008	1.142	Open Manhole	1200
S1.001	0	300	s3	19.450	17.875	1.275	Open Manhole	1200
S3.000	0	225	S4	20.000	18.400	1.375	Open Manhole	1200
S3.001	0	300	S5	19.000	17.300	1.400	Open Manhole	1200
s3.002	0	350	S6	18.000	16.494	1.156	Open Manhole	1200
S1.002	0	400	S8	18.600	16.268	1.932	Open Manhole	1350
S1.003	0	400	S9	18.600	16.251	1.949	Open Manhole	1350
S1.004	0	400	S10	18.600	16.244	1.956	Open Manhole	1350

<u>Downstream Manhole</u>

PN	Length (m)	Slope (1:X)		C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
		, ,			• •	, ,		
S1.000	51.950	45.0	S3	19.450	17.971	1.179	Open Manhole	1200
s2.000	14.700	219.4	s3	19.450	18.008	1.142	Open Manhole	1200
S2.001	9.200	69.1	S3	19.450	17.875	1.275	Open Manhole	1200
S1.001	27.050	35.0	S8	18.600	17.102	1.198	Open Manhole	1350
s3.000	33.600	40.0	S5	19.000	17.560	1.215	Open Manhole	1200
S3.001	26.450	35.0	S6	18.000	16.544	1.156	Open Manhole	1200
S3.002	26.450	150.3	S8	18.600	16.318	1.932	Open Manhole	1350
S1.002	3.300	194.1	S9	18.600	16.251	1.949	Open Manhole	1350
S1.003	2.000	300.0	S10	18.600	16.244	1.956	Open Manhole	1350
S1.004	2.000	300.0	S	18.600	16.238	1.962	Open Manhole	0

Free Flowing Outfall Details for Storm

Out	fall	Outfall C		C. Level		I. Level		Min	D,L	W	
Pipe	Number	Name		(m)		(m)	I.	Level	(mm)	(mn	1)
								(m)			
	S1.004	S		18.600		16.238		0.000	0		0

TOBIN Consulting Engineers		Page 5
Fairgreen House		
Fairgreen Road		
Galway		Micro
Date 11/07/2019 09:59	Designed by Fiontan Gallagher	Drainage
File STORM DESIGN NETWORK NO	Checked by	namaye
Micro Drainage	Network 2017.1.2	

Simulation Criteria for Storm

Volumetric Runoff Coeff 0.900 Additional Flow - % of Total Flow 10.000
Areal Reduction Factor 1.000 MADD Factor * 10m³/ha Storage 2.000
Hot Start (mins) 0 Inlet Coefficient 0.800
Hot Start Level (mm) 0 Flow per Person per Day (1/per/day) 0.000
Manhole Headloss Coeff (Global) 0.500 Run Time (mins) 60
Foul Sewage per hectare (1/s) 0.000 Output Interval (mins) 1

Number of Input Hydrographs 0 Number of Storage Structures 1 Number of Online Controls 0 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model		FSR		Profi	lle Type	Summer
Return Period (years)		1		Cv	(Summer)	0.900
Region	Scotland and	Ireland		Cv	(Winter)	0.840
M5-60 (mm)		16.500	Storm	Duration	n (mins)	30
Ratio R		0.300				

TOBIN Consulting Engineers		Page 6
Fairgreen House		
Fairgreen Road		٧
Galway		Micro
Date 11/07/2019 09:59	Designed by Fiontan Gallagher	
File STORM DESIGN NETWORK NO	Checked by	Drainage
Micro Drainage	Network 2017.1.2	

Storage Structures for Storm

Cellular Storage Manhole: S10, DS/PN: S1.004

Invert Level (m) 15.050 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.42800 Porosity 0.40 Infiltration Coefficient Side (m/hr) 0.00000

Depth (m)	Area (m²)	Inf. Area (m²)	Depth (m)	Area (m²)	Inf. Area (m²)
0.000 1.200			1.300	0.0	424.8

TOBIN Consulting Engineers	Page 1	
Fairgreen House		
Fairgreen Road		٧
Galway		Micro
Date 11/07/2019 09:59	Designed by Fiontan Gallagher	
File STORM DESIGN NETWORK NO	Checked by	Drainage
Micro Drainage	Network 2017.1.2	'

STORM SEWER DESIGN by the Modified Rational Method

Design Criteria for Storm

Pipe Sizes STANDARD Manhole Sizes STANDARD

FSR Rainfall Model - Scotland and Ireland

Return Period (years) 1 PIMP (%) 100

M5-60 (mm) 16.600 Add Flow / Climate Change (%) 10

Ratio R 0.300 Minimum Backdrop Height (m) 0.200

Maximum Rainfall (mm/hr) 50 Maximum Backdrop Height (m) 1.500

Maximum Time of Concentration (mins) 30 Min Design Depth for Optimisation (m) 1.200

Foul Sewage (1/s/ha) 0.000 Min Vel for Auto Design only (m/s) 0.75

Volumetric Runoff Coeff. 0.900 Min Slope for Optimisation (1:X) 500

Designed with Level Soffits

Network Design Table for Storm

PN	Length	Fall	Slope	I.Area	T.E.	Ва	ase	k	HYD	DIA	Section Type	Auto
	(m)	(m)	(1:X)	(ha)	(mins)	Flow	(l/s)	(mm)	SECT	(mm)		Design
S1.000	50.500	1.443	35.0	0.144	5.00		0.0	0.600	0	225	Pipe/Conduit	ð
S1.001	37.100	1.060	35.0	0.144	0.00		0.0	0.600	0	225	Pipe/Conduit	
S1.002	4.900	0.016	300.0	0.000	0.00		0.0	0.600	0	300	Pipe/Conduit	
S1.003	2.000	0.007	300.0	0.000	0.00		0.0	0.600	0	300	Pipe/Conduit	
S1.004	2.000	0.007	300.0	0.000	0.00		0.0	0.600	0	300	Pipe/Conduit	

Network Results Table

PN	Rain	T.C.	US/IL	Σ I.Area	Σ Base	Foul	Add Flow	Vel	Cap	Flow	
	(mm/hr)	(mins)	(m)	(ha)	Flow (1/s)	(1/s)	(1/s)	(m/s)	(1/s)	(1/s)	
S1.000	41.52	5.38	16.300	0.144	0.0	0.0	1.9	2.22	88.2	21.4	
S1.001	40.72	5.66	14.325	0.288	0.0	0.0	3.8	2.22	88.2	41.9	
S1.002	40.47	5.75	13.190	0.288	0.0	0.0	3.8	0.90	63.8	41.9	
S1.003	40.36	5.79	13.174	0.288	0.0	0.0	3.8	0.90	63.8	41.9	
S1.004	40.26	5.82	13.167	0.288	0.0	0.0	3.8	0.90	63.8	41.9	

TOBIN Consulting Engineers		Page 2
Fairgreen House		
Fairgreen Road		
Galway		Micco
Date 11/07/2019 09:59	Designed by Fiontan Gallagher	Drainage
File STORM DESIGN NETWORK NO	Checked by	nialilade
Micro Drainage	Network 2017.1.2	

	Manhole Schedules for Storm													
MH Name	MH CL (m)	MH Depth (m)	_	MH ection	MH Diam.,L*W (mm)	PN	Pipe O Inver Level	t	Diameter (mm)	PN	Pipes Inver Level	t Diame		Backdrop (mm)
S1	18.000	1.700	Open N	Manhole	1200	S1.000	16.3	300	225					
s2	16.300	1.975	Open N	Manhole	1200	S1.001	14.3	325	225	S1.000	14.8	357	225	532
s3	14.700	1.510	Open N	Manhole	1200	S1.002	13.1	190	300	S1.001	13.2	265	225	
S4	14.700	1.526	Open N	Manhole	1200	S1.003	13.1	174	300	S1.002	13.1	L74	300	
S5	14.700	1.533	Open N	Manhole	1200	S1.004	13.1	167	300	S1.003	13.1	L67	300	
S	14.700	1.540	Open N	Manhole	0		OUTFA	ALL		S1.004	13.1	L60	300	

TOBIN Consulting Engineers	Page 3	
Fairgreen House		
Fairgreen Road		
Galway		Micro
Date 11/07/2019 09:59	Designed by Fiontan Gallagher	Drainage
File STORM DESIGN NETWORK NO	Checked by	namaye
Micro Drainage	Network 2017.1.2	

PIPELINE SCHEDULES for Storm

<u>Upstream Manhole</u>

PN	Hyd	Diam	MH	C.Level	I.Level D.Depth		Level I.Level D.Depth		MH	MH DIAM., L*W
	Sect	(mm)	Name	(m)	(m)	(m)	Connection	(mm)		
S1.000	0	225	S1	18.000	16.300	1.475	Open Manhole	1200		
S1.001	0	225	S2	16.300	14.325	1.750	Open Manhole	1200		
S1.002	0	300	s3	14.700	13.190	1.210	Open Manhole	1200		
S1.003	0	300	S4	14.700	13.174	1.226	Open Manhole	1200		
S1.004	0	300	S5	14.700	13.167	1.233	Open Manhole	1200		

<u>Downstream Manhole</u>

PN	Length	Slope	MH	C.Level	I.Level	${\tt D.Depth}$	MH	MH DIAM., L*W
	(m)	(1:X)	Name	(m)	(m)	(m)	Connection	(mm)
S1.000	50.500	35.0	S2	16.300	14.857	1.218	Open Manhole	1200
S1.001	37.100	35.0	s3	14.700	13.265	1.210	Open Manhole	1200
S1.002	4.900	300.0	S4	14.700	13.174	1.226	Open Manhole	1200
S1.003	2.000	300.0	S5	14.700	13.167	1.233	Open Manhole	1200
S1.004	2.000	300.0	S	14.700	13.160	1.240	Open Manhole	0

Free Flowing Outfall Details for Storm

Outfall	Outfall	C.	Level	I.	Level		Min	D,L	W
Pipe Number	Name		(m)		(m)	I.	Level (m)	(mm)	(mm)

S1.004 S 14.700 13.160 0.000 0 0

Simulation Criteria for Storm

Volumetric Runoff Coeff	0.900	Additional Flow - % of Total Flow	10.000
Areal Reduction Factor	1.000	MADD Factor * 10m3/ha Storage	2.000
Hot Start (mins)	0	Inlet Coefficcient	0.800
Hot Start Level (mm)	0	Flow per Person per Day (1/per/day)	0.000
Manhole Headloss Coeff (Global)	0.500	Run Time (mins)	60
Foul Sewage per hectare (1/s)	0.000	Output Interval (mins)	1

Number of Input Hydrographs 0 Number of Storage Structures 1 Number of Online Controls 0 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model	FSR	Profile Type Summer
Return Period (years)	1	Cv (Summer) 0.900
Region	Scotland and Ireland	Cv (Winter) 0.840
M5-60 (mm)	16.600	Storm Duration (mins) 30
Ratio R	0.300	

TOBIN Consulting Engineers	Page 4	
Fairgreen House		
Fairgreen Road		٧
Galway		Micro
Date 11/07/2019 09:59	Designed by Fiontan Gallagher	
File STORM DESIGN NETWORK NO	Checked by	Drainage
Micro Drainage	Network 2017.1.2	

Storage Structures for Storm

Cellular Storage Manhole: S5, DS/PN: S1.004

Invert Level (m) 12.000 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.33959 Porosity 0.40 Infiltration Coefficient Side (m/hr) 0.00000

Depth	(m)	Area	(m²)	Inf.	Area	(m²)	Depth	(m)	Area	(m²)	Inf.	Area	(m²)
0.	000	1	20.0		1	20.0	1.	300		0.0		1	82.4
1.	200	1	20.0		1	82.4							

TOBIN Consulting Engineers	Page 1	
Fairgreen House		
Fairgreen Road		٧
Galway		Micro
Date 11/07/2019 10:00	Designed by Fiontan Gallagher	
File STORM DESIGN NETWORK NO	Checked by	Drainage
Micro Drainage	Network 2017.1.2	'

STORM SEWER DESIGN by the Modified Rational Method

Design Criteria for Storm

Pipe Sizes STANDARD Manhole Sizes STANDARD

FSR Rainfall Model - Scotland and Ireland

Return Period (years) 1 PIMP (%) 100

M5-60 (mm) 17.000 Add Flow / Climate Change (%) 10

Ratio R 0.300 Minimum Backdrop Height (m) 0.200

Maximum Rainfall (mm/hr) 50 Maximum Backdrop Height (m) 1.500

Maximum Time of Concentration (mins) 30 Min Design Depth for Optimisation (m) 1.200

Foul Sewage (1/s/ha) 0.000 Min Vel for Auto Design only (m/s) 1.00

Volumetric Runoff Coeff. 0.900 Min Slope for Optimisation (1:X) 500

Designed with Level Soffits

Network Design Table for Storm

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)		Base Flow (1/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
S1.000	30.200	0.604	50.0	0.068	5.00	0.0	0.600	0	225	Pipe/Conduit	ð
S2.000	23.200	0.077	300.0	0.081	5.00	0.0	0.600	0	225	Pipe/Conduit	ð
\$1.001 \$1.002 \$1.003 \$1.004		0.010	308.0	0.170 0.000 0.000 0.000	0.00 0.00 0.00 0.00	0.0	0.600 0.600 0.600	0 0	300 300	Pipe/Conduit Pipe/Conduit Pipe/Conduit Pipe/Conduit	9 6 6 6

Network Results Table

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (1/s)		Add Flow (1/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)	
S1.000	42.87	5.27	15.375	0.068	0.0	0.0	0.9	1.85	73.7	10.4	
S2.000	42.13	5.52	14.125	0.081	0.0	0.0	1.1	0.75	29.8	12.2	
\$1.001 \$1.002 \$1.003 \$1.004	41.30 41.14 41.04 40.94	5.86 5.90	13.973 13.921 13.911 13.904	0.319 0.319 0.319 0.319	0.0 0.0 0.0	0.0 0.0 0.0	4.3 4.3 4.3	0.90 0.89 0.90 0.90	63.8 63.8 63.8	47.1 47.1 47.1 47.1	

TOBIN Consulting Engineers	Page 2	
Fairgreen House		
Fairgreen Road		
Galway		Micco
Date 11/07/2019 10:00	Designed by Fiontan Gallagher	Drainage
File STORM DESIGN NETWORK NO	Checked by	namaye
Micro Drainage	Network 2017.1.2	

	Manhole Schedules for Storm													
MH Name	MH CL (m)	MH Depth (m)	Connec		MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m	Diameter	PN	Pipes In Invert Level (m)	Diameter (mm)	Backdrop		
S1	16.850	1.475	Open Ma	anhole	1200	S1.000	15.37	5 225						
S2	15.550	1.425	Open Ma	anhole	1200	s2.000	14.12	5 225						
S3	16.200	2.227	Open Ma	anhole	1200	s1.001	13.97	300	S1.000	14.771	225	723		
									S2.000	14.048	225	i		
S4	15.950	2.029	Open Ma	anhole	1200	S1.002	13.92	1 300	S1.001	13.921	300	1		
S5	15.950	2.039	Open Ma	anhole	1200	s1.003	13.91	1 300	S1.002	13.911	300)		
s6	15.950	2.046	Open Ma	anhole	1200	S1.004	13.90	300	s1.003	13.904	300)		
S	15.950	2.053	Open Ma	anhole	0		OUTFAL		S1.004	13.897	300)		

TOBIN Consulting Engineers	Page 3	
Fairgreen House		
Fairgreen Road		
Galway		Micro
Date 11/07/2019 10:00	Designed by Fiontan Gallagher	Drainage
File STORM DESIGN NETWORK NO	Checked by	Dialitade
Micro Drainage	Network 2017.1.2	

PIPELINE SCHEDULES for Storm

<u>Upstream Manhole</u>

PN	-			C.Level		-	мн	MH DIAM., L*W
	Sect	(mm)	Name	(m)	(m)	(m)	Connection	(mm)
S1.000	0	225	S1	16.850	15.375	1.250	Open Manhole	1200
s2.000	0	225	S2	15.550	14.125	1.200	Open Manhole	1200
S1.001	0	300	s3	16.200	13.973	1.927	Open Manhole	1200
S1.002	0	300	S4	15.950	13.921	1.729	Open Manhole	1200
S1.003	0	300	S5	15.950	13.911	1.739	Open Manhole	1200
S1.004	0	300	S6	15.950	13.904	1.746	Open Manhole	1200

<u>Downstream Manhole</u>

PN	Length (m)	Slope (1:X)		C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
S1.000	30.200	50.0	s3	16.200	14.771	1.204	Open Manhole	1200
S2.000	23.200	300.0	s3	16.200	14.048	1.927	Open Manhole	1200
S1.001 S1.002	15.600		S4 S5	15.950 15.950	13.921 13.911		Open Manhole Open Manhole	1200 1200
S1.003	2.000		S6		13.904		Open Manhole	1200
S1.004	2.000	300.0	S	15.950	13.897	1.753	Open Manhole	0

Free Flowing Outfall Details for Storm

Outfall	Outfall	С.	Level	I.	Level		Min	D,L	W
Pipe Number	Name		(m)		(m)	I. Level		(mm)	(mm)
							(m)		

S1.004 S 15.950 13.897 0.000 0 0

Simulation Criteria for Storm

Volumetric Runoff Coeff	0.900	Additional Flow - % of Total Flow	10.000
Areal Reduction Factor	1.000	MADD Factor * 10m³/ha Storage	2.000
Hot Start (mins)	0	Inlet Coeffiecient	0.800
Hot Start Level (mm)	0	Flow per Person per Day (1/per/day)	0.000
Manhole Headloss Coeff (Global)	0.500	Run Time (mins)	60
Foul Sewage per hectare (1/s)	0.000	Output Interval (mins)	1

Number of Input Hydrographs 0 Number of Storage Structures 1 Number of Online Controls 0 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

TOBIN Consulting Engineers		Page 4
Fairgreen House		
Fairgreen Road		4
Galway		Micro
Date 11/07/2019 10:00	Designed by Fiontan Gallagher	
File STORM DESIGN NETWORK NO	Checked by	Drainage
Micro Drainage	Network 2017.1.2	

Synthetic Rainfall Details

Rainfall Model	FSR	Profile Type	Summer
Return Period (years)	1	Cv (Summer)	0.900
Region	Scotland and Ireland	Cv (Winter)	0.840
M5-60 (mm)	17.000	Storm Duration (mins)	30
Ratio R	0.300		

TOBIN Consulting Engineers		Page 5
Fairgreen House		
Fairgreen Road		٧
Galway		Micro
Date 11/07/2019 10:00	Designed by Fiontan Gallagher	
File STORM DESIGN NETWORK NO	Checked by	Drainage
Micro Drainage	Network 2017.1.2	

Storage Structures for Storm

Cellular Storage Manhole: S6, DS/PN: S1.004

Invert Level (m) 12.704 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.08316 Porosity 0.40 Infiltration Coefficient Side (m/hr) 0.00000

Depth	(m)	Area	(m²)	Inf.	Area	(m²)	Depth	(m)	Area	(m²)	Inf.	Area	(m²)
0.	000	2	261.0		2	261.0	1.	300		0.0		3	52.2
1.	200	2	261.0		3	352.2							

TOBIN Consulting Engineers		Page 1
Fairgreen House		
Fairgreen Road		٧
Galway		Micro
Date 11/07/2019 10:01	Designed by Fiontan Gallagher	
File STORM DESIGN NETWORK NO	Checked by	Drainage
Micro Drainage	Network 2017.1.2	'

STORM SEWER DESIGN by the Modified Rational Method

Design Criteria for Storm

Pipe Sizes STANDARD Manhole Sizes STANDARD

FSR Rainfall Model - Scotland and Ireland

Return Period (years) 1 PIMP (%) 100

M5-60 (mm) 16.800 Add Flow / Climate Change (%) 10

Ratio R 0.300 Minimum Backdrop Height (m) 0.200

Maximum Rainfall (mm/hr) 50 Maximum Backdrop Height (m) 1.500

Maximum Time of Concentration (mins) 30 Min Design Depth for Optimisation (m) 1.200

Foul Sewage (1/s/ha) 0.000 Min Vel for Auto Design only (m/s) 0.75

Volumetric Runoff Coeff. 0.900 Min Slope for Optimisation (1:X) 500

Designed with Level Soffits

Network Design Table for Storm

PN	Length	Fall	Slope	I.Area	T.E.	Ва	ase	k	HYD	DIA	Section Type	Auto
	(m)	(m)	(1:X)	(ha)	(mins)	Flow	(1/s)	(mm)	SECT	(mm)		Design
1.000	8.900	0.148	60.1	0.068	5.00		0.0	0.600	0	225	Pipe/Conduit	ð
1.001	8.218		35.0	0.025	0.00			0.600	0		Pipe/Conduit	ď
1.002	30.000	0.675	44.4	0.025	0.00		0.0	0.600	0	225	Pipe/Conduit	ď
2.000	25.300	0.723	35.0	0.119	5.00		0.0	0.600	0	225	Pipe/Conduit	•
1.003	19.100	0.546	35.0	0.021	0.00		0.0	0.600	0	225	Pipe/Conduit	€
1.004	7.372	0.025	300.0	0.000	0.00		0.0	0.600	0	300	Pipe/Conduit	ĕ
1.005	2.000	0.007	300.0	0.000	0.00		0.0	0.600	0	300	Pipe/Conduit	ĕ
1.006	2.000	0.007	300.0	0.000	0.00		0.0	0.600	0	300	Pipe/Conduit	ď

Network Results Table

PN	Rain	T.C.	US/IL	Σ I.Area	Σ Base	Foul	Add Flow	Vel	Cap	Flow
	(mm/hr)	(mins)	(m)	(ha)	Flow (1/s)	(1/s)	(1/s)	(m/s)	(1/s)	(1/s)
1.000	42.93	5.09	14.925	0.068	0.0	0.0	0.9	1.69	67.2	10.4
1.001	42.73	5.15	14.210	0.093	0.0	0.0	1.3	2.22	88.3	14.2
1.002	41.96	5.40	13.975	0.118	0.0	0.0	1.6	1.97	78.2	17.7
2.000	42.61	5.19	14.175	0.119	0.0	0.0	1.6	2.22	88.2	18.1
1.003	41.54	5.55	13.000	0.258	0.0	0.0	3.5	2.22	88.2	38.3
1.004	41.15	5.68	12.379	0.258	0.0	0.0	3.5	0.90	63.8	38.3
1.005	41.04	5.72	12.354	0.258	0.0	0.0	3.5	0.90	63.8	38.3
1.006	40.94	5.76	12.348	0.258	0.0	0.0	3.5	0.90	63.8	38.3

TOBIN Consulting Engineers		Page 2
Fairgreen House		
Fairgreen Road		
Galway		Micco
Date 11/07/2019 10:01	Designed by Fiontan Gallagher	Drainage
File STORM DESIGN NETWORK NO	Checked by	nialilade
Micro Drainage	Network 2017.1.2	

Manhole Schedules for Storm

MH Name	MH CL (m)	MH Depth (m)	MH Connection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diameter (mm)	Backdrop (mm)
1	16.350	1.425	Open Manhole	1200	1.000	14.925	225				
2	16.250	2.040	Open Manhole	1200	1.001	14.210	225	1.000	14.777	225	567
3	15.400	1.425	Open Manhole	1200	1.002	13.975	225	1.001	13.975	225	
4	15.600	1.425	Open Manhole	1200	2.000	14.175	225				
5	14.900	1.900	Open Manhole	1200	1.003	13.000	225	1.002	13.300	225	300
								2.000	13.452	225	452
6	13.950	1.571	Open Manhole	1200	1.004	12.379	300	1.003	12.454	225	
7	13.950	1.596	Open Manhole	1200	1.005	12.354	300	1.004	12.354	300	
8	13.950	1.602	Open Manhole	1200	1.006	12.348	300	1.005	12.348	300	
	13.950	1.609	Open Manhole	0		OUTFALL		1.006	12.341	300	

TOBIN Consulting Engineers		Page 3
Fairgreen House		
Fairgreen Road		
Galway		Micro
Date 11/07/2019 10:01	Designed by Fiontan Gallagher	Drainage
File STORM DESIGN NETWORK NO	Checked by	nialilade
Micro Drainage	Network 2017.1.2	

PIPELINE SCHEDULES for Storm

<u>Upstream Manhole</u>

PN	Hyd Sect		MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
1.000	0	225 225	1 2	16.350 16.250	14.925 14.210		Open Manhole Open Manhole	1200 1200
1.001	0	225	3		13.975		Open Manhole	1200
2.000	0	225	4	15.600	14.175	1.200	Open Manhole	1200
1.003	0	225	5	14.900	13.000	1.675	Open Manhole	1200
1.004	0	300	6	13.950	12.379	1.271	Open Manhole	1200
1.005	0	300	7	13.950	12.354	1.296	Open Manhole	1200
1.006	0	300	8	13.950	12.348	1.302	Open Manhole	1200

<u>Downstream Manhole</u>

PN	Length	Slope	MH	C.Level	I.Level	D.Depth	MH	MH DIAM., L*W
	(m)	(1:X)	Name	(m)	(m)	(m)	Connection	(mm)
1.000	8.900	60.1	2	16.250	14.777	1.248	Open Manhole	1200
1.001		35.0	3	15.400	13.975		Open Manhole	
1.002	30.000	44.4	5	14.900	13.300	1.375	Open Manhole	1200
2.000	25.300	35.0	5	14.900	13.452	1.223	Open Manhole	1200
1.003	19.100	35.0	6	13.950	12.454	1.271	Open Manhole	1200
1.004	7.372	300.0	7	13.950	12.354	1.296	Open Manhole	1200
1.005	2.000	300.0	8	13.950	12.348	1.302	Open Manhole	1200
1.006	2.000	300.0		13.950	12.341	1.309	Open Manhole	0

Free Flowing Outfall Details for Storm

Outfall	Outfall	c.	Level	I.	Level		Min	D,L	W
Pipe Number	Name		(m)		(m)	I.	Level (m)	(mm)	(mm)

1.006 13.950 12.341 0.000 0 0

Simulation Criteria for Storm

Volumetric Runoff Coeff	0.900	Additional Flow - % of Total Flow	10.000
Areal Reduction Factor	1.000	MADD Factor * 10m3/ha Storage	2.000
Hot Start (mins)	0	Inlet Coefficcient	0.800
Hot Start Level (mm)	0	Flow per Person per Day (1/per/day)	0.000
Manhole Headloss Coeff (Global)	0.500	Run Time (mins)	60
Foul Sewage per hectare (1/s)	0.000	Output Interval (mins)	1

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Online Controls 0 Number of Storage Structures 1

TOBIN Consulting Engineers	Page 4	
Fairgreen House		
Fairgreen Road		4
Galway		Micro
Date 11/07/2019 10:01	Designed by Fiontan Gallagher	Drainage
File STORM DESIGN NETWORK NO	Checked by	Dialilade
Micro Drainage	Network 2017.1.2	

Simulation Criteria for Storm

Number of Time/Area Diagrams 0 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model			FSR		Summer		
Return Period (years)			1		Cv	(Summer)	0.900
Region	Scotland	and	Ireland		Cv	(Winter)	0.840
M5-60 (mm)			16.800	Storm	Duratio	n (mins)	30
Ratio R			0.300				

TOBIN Consulting Engineers		Page 5
Fairgreen House		
Fairgreen Road		٧
Galway		Micro
Date 11/07/2019 10:01	Designed by Fiontan Gallagher	
File STORM DESIGN NETWORK NO	Checked by	Drainage
Micro Drainage	Network 2017.1.2	

Storage Structures for Storm

Cellular Storage Manhole: 8, DS/PN: 1.006

Invert Level (m) 11.155 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.08316 Porosity 0.40 Infiltration Coefficient Side (m/hr) 0.00000

Depth	(m)	Area	(m²)	Inf.	Area	(m²)	Depth	(m)	Area	(m²)	Inf.	Area	(m²)
0.0	000	2	220.0		2	220.0	1.	300		0.0		2	294.4
1.3	200	2	220.0		2	294.4							

TOBIN Consulting Engineers		Page 1
Fairgreen House		
Fairgreen Road		4
Galway		Micro
Date 11/07/2019 10:02	Designed by Fiontan Gallagher	Drainage
File STORM DESIGN NETWORK NO	Checked by	Dialilatic
Micro Drainage	Network 2017.1.2	

STORM SEWER DESIGN by the Modified Rational Method

Design Criteria for Storm

Pipe Sizes STANDARD Manhole Sizes STANDARD

FSR Rainfall Model - Scotland and Ireland

Return Period (years) 1 PIMP (%) 100

M5-60 (mm) 16.800 Add Flow / Climate Change (%) 10

Ratio R 0.300 Minimum Backdrop Height (m) 0.200

Maximum Rainfall (mm/hr) 50 Maximum Backdrop Height (m) 1.500

Maximum Time of Concentration (mins) 30 Min Design Depth for Optimisation (m) 1.200

Foul Sewage (l/s/ha) 0.000 Min Vel for Auto Design only (m/s) 0.75

Volumetric Runoff Coeff. 0.900 Min Slope for Optimisation (1:X) 500

Designed with Level Soffits

Network Design Table for Storm

-		-					k (mm)	HYD		Section Type	Auto Design
(111)	(111)	(I.A)	(IIa)	(IIIIIIS)	FIOW	(I/S)	(11411)	SECI	(111111)		Design
21.600	0.617	35.0	0.081	5.00		0.0	0.600	0	225	Pipe/Conduit	ð
19.700	0.563	35.0	0.060	0.00		0.0	0.600	0	225	Pipe/Conduit	ď
46.000	0.700	65.7	0.137	0.00		0.0	0.600	0	300	Pipe/Conduit	ĕ
42.600	0.448	95.0	0.137	0.00		0.0	0.600	0	300	Pipe/Conduit	<u>-</u>
43.700	0.624	70.0	0.119	5.00		0.0	0.600	0	225	Pipe/Conduit	₩
19.900	0.100	199.0	0.032	0.00		0.0	0.600	0	225	Pipe/Conduit	0
1.700	0.006	300.0	0.000	0.00		0.0	0.600	0	375	Pipe/Conduit	₩
2.000	0.007	300.0	0.000	0.00		0.0	0.600	0	375	Pipe/Conduit	₩
2.000	0.007	300.0	0.000	0.00		0.0	0.600	0	375	Pipe/Conduit	ĕ
	(m) 21.600 19.700 46.000 42.600 43.700 19.900 1.700 2.000	(m) (m) 21.600 0.617 19.700 0.563 46.000 0.700 42.600 0.448 43.700 0.624 19.900 0.100 1.700 0.006 2.000 0.007	(m) (m) (1:x) 21.600 0.617 35.0 19.700 0.563 35.0 46.000 0.700 65.7 42.600 0.448 95.0 43.700 0.624 70.0 19.900 0.100 199.0 1.700 0.006 300.0 2.000 0.007 300.0	(m) (m) (1:x) (ha) 21.600 0.617 35.0 0.081 19.700 0.563 35.0 0.060 46.000 0.700 65.7 0.137 42.600 0.448 95.0 0.137 43.700 0.624 70.0 0.119 19.900 0.100 199.0 0.032 1.700 0.006 300.0 0.000 2.000 0.007 300.0 0.000	(m) (m) (1:X) (ha) (mins) 21.600 0.617 35.0 0.081 5.00 19.700 0.563 35.0 0.060 0.00 46.000 0.700 65.7 0.137 0.00 42.600 0.448 95.0 0.137 0.00 43.700 0.624 70.0 0.119 5.00 19.900 0.100 199.0 0.032 0.00 1.700 0.006 300.0 0.000 0.00 2.000 0.007 300.0 0.000 0.00	(m) (m) (1:X) (ha) (mins) Flow 21.600 0.617 35.0 0.081 5.00 19.700 0.563 35.0 0.060 0.00 46.000 0.700 65.7 0.137 0.00 42.600 0.448 95.0 0.137 0.00 0.00 43.700 0.624 70.0 0.119 5.00 19.900 0.000 19.900 0.002 0.00 0.00 1.700 0.006 300.0 0.000 0.00 0.00 2.000 0.000 0.000 0.00	(m) (m) (1:X) (ha) (mins) Flow (1/s) 21.600 0.617 35.0 0.081 5.00 0.0 19.700 0.563 35.0 0.060 0.00 0.0 46.000 0.700 65.7 0.137 0.00 0.0 42.600 0.448 95.0 0.137 0.00 0.0 43.700 0.624 70.0 0.119 5.00 0.0 19.900 0.100 199.0 0.032 0.00 0.0 1.700 0.006 300.0 0.000 0.00 0.0 2.000 0.007 300.0 0.000 0.00 0.0	(m) (m) (1:X) (ha) (mins) Flow (1/s) (mm) 21.600 0.617 35.0 0.081 5.00 0.0 0.600 19.700 0.563 35.0 0.060 0.00 0.0 0.600 46.000 0.700 65.7 0.137 0.00 0.0 0.600 42.600 0.448 95.0 0.137 0.00 0.0 0.600 43.700 0.624 70.0 0.119 5.00 0.0 0.600 19.900 0.100 199.0 0.032 0.00 0.0 0.600 1.700 0.006 300.0 0.000 0.00 0.0 0.600 2.000 0.007 300.0 0.000 0.00 0.0 0.600	(m) (m) (1:X) (ha) (mins) Flow (1/s) (mm) SECT 21.600 0.617 35.0 0.081 5.00 0.0 0.600 0 19.700 0.563 35.0 0.060 0.00 0.0 0.600 0 46.000 0.700 65.7 0.137 0.00 0.0 0.600 0 42.600 0.448 95.0 0.137 0.00 0.0 0.600 0 19.900 0.100 199.0 0.032 0.00 0.0 0.600 0 1.700 0.006 300.0 0.000 0.00 0.600 0 2.000 0.007 300.0 0.000 0.00 0.000 0	(m) (m) (1:X) (ha) (mins) Flow (1/s) (mm) SECT (mm) 21.600 0.617 35.0 0.081 5.00 0.0 0.600 0.225 19.700 0.563 35.0 0.060 0.00 0.0 0.600 0.225 46.000 0.700 65.7 0.137 0.00 0.0 0.600 0.300 42.600 0.448 95.0 0.137 0.00 0.0 0.600 0.225 19.900 0.100 199.0 0.032 0.00 0.0 0.600 0.225 1.700 0.006 300.0 0.000 0.00 0.600 0.375 2.000 0.007 300.0 0.000 0.00 0.600 0.375	(m) (m) (1:X) (ha) (mins) Flow (1/s) (mm) SECT (mm) 21.600 0.617 35.0 0.081 5.00 0.0 0.600 0 225 Pipe/Conduit 19.700 0.563 35.0 0.060 0.00 0.0 0.600 0 225 Pipe/Conduit 46.000 0.700 65.7 0.137 0.00 0.0 0.600 0 300 Pipe/Conduit 42.600 0.448 95.0 0.137 0.00 0.0 0.600 0 300 Pipe/Conduit 43.700 0.624 70.0 0.119 5.00 0.0 0.600 0 225 Pipe/Conduit 19.900 0.100 199.0 0.032 0.00 0.0 0.600 0 225 Pipe/Conduit 1.700 0.006 300.0 0.000 0.00 0.600 0 375 Pipe/Conduit 2.000 0.007 300.0 0.000 0.00 0.600 0 375 <t< td=""></t<>

Network Results Table

PN	Rain	T.C.	US/IL	Σ I.Area	ΣΕ	Σ Base		Add Flow	Vel	Cap	Flow	
	(mm/hr)	(mins)	(m)	(ha)	Flow	(1/s)	(1/s)	(1/s)	(m/s)	(1/s)	(1/s)	
1.000	42.69	5 16	10.292	0.081		0.0	0.0	1.1	2.22	88.2	12.4	
1.000	42.09	5.31	9.275	0.141		0.0	0.0	1.9	2.22	88.2	21.3	
1.001	41.08	5.70	8.637	0.278		0.0	0.0	3.7		137.3	40.8	
1.002	39.89	6.14	7.937	0.415		0.0	0.0	5.4		114.0	59.2	
1.005	33.03	0.11	1.551	0.415		0.0	0.0	3.4	1.01	114.0	33.2	
2.000	41.78	5.47	8.325	0.119		0.0	0.0	1.6	1.56	62.2	17.8	
2.001	40.75	5.82	7.675	0.151		0.0	0.0	2.0	0.92	36.7	22.0	
1.004	39.81	6.17	7.414	0.566		0.0	0.0	7.3	1.04	115.0	80.6	
1.005	39.73	6.20	7.408	0.566		0.0	0.0	7.3		115.0	80.6	
1.006	39.65	6.24	7.401	0.566		0.0	0.0	7.3	1.04	115.0	80.6	

TOBIN Consulting Engineers		Page 2
Fairgreen House		
Fairgreen Road		
Galway		Micco
Date 11/07/2019 10:02	Designed by Fiontan Gallagher	Drainage
File STORM DESIGN NETWORK NO	Checked by	nialilade
Micro Drainage	Network 2017.1.2	

Manhole Schedules for Storm

MH Name	MH CL (m)	MH Depth (m)	MH Connection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diameter (mm)	Backdrop (mm)
1	12.350	2.058	Open Manhole	1200	1.000	10.292	225				
2	11.100	1.825	Open Manhole	1200	1.001	9.275	225	1.000	9.675	225	400
3	10.200	1.563	Open Manhole	1200	1.002	8.637	300	1.001	8.712	225	
4	9.500	1.563	Open Manhole	1200	1.003	7.937	300	1.002	7.937	300	
5	9.750	1.425	Open Manhole	1200	2.000	8.325	225				
6	9.100	1.425	Open Manhole	1200	2.001	7.675	225	2.000	7.701	225	26
7	9.050	1.636	Open Manhole	1350	1.004	7.414	375	1.003	7.489	300	
								2.001	7.575	225	11
8	9.000	1.592	Open Manhole	1350	1.005	7.408	375	1.004	7.408	375	
9	9.000	1.599	Open Manhole	1350	1.006	7.401	375	1.005	7.401	375	
	9.000	1.605	Open Manhole	0		OUTFALL		1.006	7.395	375	

TOBIN Consulting Engineers	Page 3	
Fairgreen House		
Fairgreen Road		٧
Galway		Micro
Date 11/07/2019 10:02	Designed by Fiontan Gallagher	
File STORM DESIGN NETWORK NO	Checked by	Drainage
Micro Drainage	Network 2017.1.2	'

PIPELINE SCHEDULES for Storm

<u>Upstream Manhole</u>

PN	Hyd	Diam	MH	C.Level	I.Level	D.Depth	MH	MH DIAM., L*W
	Sect	(mm)	Name	(m)	(m)	(m)	Connection	(mm)
1.000	0	225	1	12.350	10.292	1.833	Open Manhole	1200
1.001	0	225	2	11.100	9.275		Open Manhole	1200
1.002	0	300	3	10.200	8.637	1.263	Open Manhole	1200
1.003	0	300	4	9.500	7.937	1.263	Open Manhole	1200
2.000	0	225	5	9.750	8.325	1.200	Open Manhole	1200
2.001	0	225	6	9.100	7.675	1.200	Open Manhole	1200
1.004	0	375	7	9.050	7.414	1.261	Open Manhole	1350
1.005	0	375	8	9.000	7.408	1.217	Open Manhole	1350
1.006	0	375	9	9.000	7.401	1.224	Open Manhole	1350

<u>Downstream Manhole</u>

PN	Length	Slope	MH	C.Level	I.Level	D.Depth	MH	MH DIAM., L*W
	(m)	(1:X)	Name	(m)	(m)	(m)	Connection	(mm)
1.000	21.600	35.0	2	11.100	9.675	1.200	Open Manhole	1200
1.001	19.700	35.0	3	10.200	8.712		Open Manhole	1200
1.002	46.000	65.7	4	9.500	7.937	1.263	Open Manhole	1200
1.003	42.600	95.0	7	9.050	7.489	1.261	Open Manhole	1350
2.000	43.700	70.0	6	9.100	7.701	1.174	Open Manhole	1200
2.001	19.900	199.0	7	9.050	7.575	1.250	Open Manhole	1350
1.004	1.700	300.0	8	9.000	7.408	1.217	Open Manhole	1350
1.005	2.000	300.0	9	9.000	7.401	1.224	Open Manhole	1350
1.006	2.000	300.0		9.000	7.395	1.230	Open Manhole	0

Free Flowing Outfall Details for Storm

Outfall	Outfall	c.	Level	I.	Level	Min		D,L	W
Pipe Number	Name		(m)		(m) I. Level (m		(mm)	(mm)	
							(m)		
1.006			9.000		7.395		0.000	0	0

TOBIN Consulting Engineers		Page 4
Fairgreen House		
Fairgreen Road		
Galway		Micro
Date 11/07/2019 10:02	Designed by Fiontan Gallagher	Drainage
File STORM DESIGN NETWORK NO	Checked by	Dialilade
Micro Drainage	Network 2017.1.2	

Simulation Criteria for Storm

Volumetric Runoff Coeff 0.900 Additional Flow - % of Total Flow 10.000
Areal Reduction Factor 1.000 MADD Factor * 10m³/ha Storage 2.000
Hot Start (mins) 0 Inlet Coefficient 0.800
Hot Start Level (mm) 0 Flow per Person per Day (1/per/day) 0.000
Manhole Headloss Coeff (Global) 0.500 Run Time (mins) 60
Foul Sewage per hectare (1/s) 0.000 Output Interval (mins) 1

Number of Input Hydrographs 0 Number of Storage Structures 1 Number of Online Controls 0 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model		FSR		Profi	le Type	Summer
Return Period (years)		1		Cv (Summer)	0.900
Region	Scotland and	l Ireland		Cv (Winter)	0.840
M5-60 (mm)		16.800	Storm	Duration	(mins)	30
Ratio R		0.300				

TOBIN Consulting Engineers		Page 5
Fairgreen House		
Fairgreen Road		٧
Galway		Micro
Date 11/07/2019 10:02	Designed by Fiontan Gallagher	
File STORM DESIGN NETWORK NO	Checked by	Drainage
Micro Drainage	Network 2017.1.2	

Storage Structures for Storm

Cellular Storage Manhole: 9, DS/PN: 1.006

Invert Level (m) 6.210 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.33959 Porosity 0.40 Infiltration Coefficient Side (m/hr) 0.00000

Depth	(m)	Area	(m²)	Inf.	Area	(m²)	Depth	(m)	Area	(m²)	Inf.	Area	(m²)
0.	000	2	264.0		2	264.0	1.	300		0.0		3	62.4
1.	200	2	264.0		3	362.4							

TOBIN Consulting Engineers		Page 1
Fairgreen House		
Fairgreen Road		
Galway		Micro
Date 11/07/2019 10:05	Designed by Fiontan Gallagher	Drainage
File STORM DESIGN NETWORK NO	Checked by	nialliade
Micro Drainage	Network 2017.1.2	

STORM SEWER DESIGN by the Modified Rational Method

Design Criteria for Storm

Pipe Sizes STANDARD Manhole Sizes STANDARD

FSR Rainfall Model - Scotland and Ireland

Return Period (years) 1 PIMP (%) 100

M5-60 (mm) 16.800 Add Flow / Climate Change (%) 10

Ratio R 0.300 Minimum Backdrop Height (m) 0.200

Maximum Rainfall (mm/hr) 50 Maximum Backdrop Height (m) 1.500

Maximum Time of Concentration (mins) 30 Min Design Depth for Optimisation (m) 1.200

Foul Sewage (l/s/ha) 0.000 Min Vel for Auto Design only (m/s) 0.75

Volumetric Runoff Coeff. 0.900 Min Slope for Optimisation (1:X) 500

Designed with Level Soffits

Network Design Table for Storm

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)		Base Flow (1/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
1.00	0 68.000	2.267	30.0	0.217	5.00	0.0	0.600	0	225	Pipe/Conduit	ð
2.00	0 69.600	0.516	135.0	0.206	5.00	0.0	0.600	0	300	Pipe/Conduit	•
	1 26.600 2 24.800 3 8.973		40.0	0.069 0.074 0.007	0.00 0.00 0.00	0.0	0.600 0.600 0.600	0 0	350	Pipe/Conduit Pipe/Conduit Pipe/Conduit	6 6
3.00	0 35.300	0.122	290.0	0.136	5.00	0.0	0.600	0	225	Pipe/Conduit	♂
4.00	0 42.500	0.425	100.0	0.246	5.00	0.0	0.600	0	300	Pipe/Conduit	♂
3.00	1 9.800	0.065	150.0	0.008	0.00	0.0	0.600	0	300	Pipe/Conduit	€

Network Results Table

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (1/s)		Add Flow (1/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)	
1.000	41.75	5.47	11.440	0.217	0.0	0.0	2.9	2.40	95.3	32.4	
2.000	40.66	5.86	9.675	0.206	0.0	0.0	2.7	1.35	95.5	29.9	
1.001	39.30	6.22	9.048	0.492	0.0	0.0	7.2		264.6	69.8	
1.003		6.51 5.77	8.270 8.575	0.573	0.0	0.0	7.3 1.8		30.3	79.8	
4.000		5.45	8.875	0.246	0.0	0.0			111.1	36.8	
3.001	40.55	5.90	8.378	0.390	0.0	0.0	5.1	1.28	90.6	56.5	
			C	1982-201	7 XP Solu	tions	!				_

TOBIN Consulting Engineers		Page 2
Fairgreen House		
Fairgreen Road		4
Galway		Micro
Date 11/07/2019 10:05	Designed by Fiontan Gallagher	Drainage
File STORM DESIGN NETWORK NO	Checked by	Dialilade
Micro Drainage	Network 2017.1.2	

Network Design Table for Storm

PN	Length	Fall	Slope	I.Area	T.E.	Ba	ase	k	HYD	DIA	Section Type	Auto
	(m)	(m)	(1:X)	(ha)	(mins)	Flow	(1/s)	(mm)	SECT	(mm)		Design
1.004	6.000	0.020	300.0	0.000	0.00		0.0	0.600	0	450	Pipe/Conduit	of f
1.005	2.000	0.007	300.0	0.000	0.00		0.0	0.600	0	450	Pipe/Conduit	Ğ
1.006	2.000	0.007	300.0	0.000	0.00		0.0	0.600	0	450	Pipe/Conduit	ď

Network Results Table

PN	Rain	T.C.	US/IL	Σ I.Area	Σ Base	Foul	Add Flow	Vel	Cap	Flow	
	(mm/hr)	(mins)	(m)	(ha)	Flow (1/s)	(1/s)	(1/s)	(m/s)	(1/s)	(1/s)	
1.004	38.73	6.60	8.163	0.963	0.0	0.0	12.1	1.17	185.8	133.3	
1.005	38.66	6.63	8.143	0.963	0.0	0.0	12.1	1.17	185.8	133.3	
1.006	38.59	6.66	8.136	0.963	0.0	0.0	12.1	1.17	185.8	133.3	

TOBIN Consulting Engineers		Page 3
Fairgreen House		
Fairgreen Road		
Galway		Micco
Date 11/07/2019 10:05	Designed by Fiontan Gallagher	Drainage
File STORM DESIGN NETWORK NO	Checked by	namaye
Micro Drainage	Network 2017.1.2	

Manhole Schedules for Storm

MH Name	MH CL (m)	MH Depth	MH Connectio	MH n Diam.,L*W	PN	Pipe Out Invert	Diameter	PN	Pipes In Invert	Diameter	Po ok drove
Name	CL (III)	(m)	Connectio	(mm)	PN	Level (m)	(mm)	PN	Level (m)	(mm)	(mm)
1	13.330	1.890	Open Manho	le 1200	1.000	11.440	225				
2	11.100	1.425	Open Manho	le 1200	2.000	9.675	300				
3	10.600	1.552	Open Manho	le 1200	1.001	9.048	350	1.000	9.173	225	
								2.000	9.159	300	61
4	10.500	1.585	Open Manho	le 1200	1.002	8.915	350	1.001	8.915	350	
5	9.900	1.630	Open Manho	le 1350	1.003	8.270	375	1.002	8.295	350	
6	10.000	1.425	Open Manho	le 1200	3.000	8.575	225				
7	10.300	1.425	Open Manho	le 1200	4.000	8.875	300				
8	10.000	1.622	Open Manho	le 1200	3.001	8.378	300	3.000	8.453	225	
								4.000	8.450	300	72
9	10.000	1.837	Open Manho	le 1350	1.004	8.163	450	1.003	8.240	375	2
								3.001	8.313	300	
10	10.000	1.857	Open Manho	le 1350	1.005	8.143	450	1.004	8.143	450	
11	10.000	1.864	Open Manho	le 1350	1.006	8.136	450	1.005	8.136	450	
	10.000	1.870	Open Manho	le 0		OUTFALL		1.006	8.130	450	

TOBIN Consulting Engineers		Page 4	
Fairgreen House			
Fairgreen Road			
Galway		Micro	
Date 11/07/2019 10:05	Designed by Fiontan Gallagher	Drainage	
File STORM DESIGN NETWORK NO	Checked by	Dialilade	
Micro Drainage	Network 2017.1.2		

PIPELINE SCHEDULES for Storm

<u>Upstream Manhole</u>

PN	-	Diam (mm)		C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
1.000	0	225	1	13.330	11.440	1.665	Open Manhole	1200
2.000	0	300	2	11.100	9.675	1.125	Open Manhole	1200
1.001	0		3	10.600			Open Manhole	1200
1.002	0	350	4	10.500	8.915	1.235	Open Manhole	1200
1.003	0	375	5	9.900	8.270	1.255	Open Manhole	1350
3.000	0	225	6	10.000	8.575	1.200	Open Manhole	1200
4.000	0	300	7	10.300	8.875	1.125	Open Manhole	1200
3.001	0	300	8	10.000	8.378	1.322	Open Manhole	1200
1.004	0	450	9	10.000	8.163	1.387	Open Manhole	1350
1.005	0	450	10	10.000	8.143	1.407	Open Manhole	1350
1.006	0	450	11	10.000	8.136		Open Manhole	
1.000	O	-100	т т	10.000	0.130	T . III	open namore	1330

<u>Downstream Manhole</u>

PN	Length (m)	Slope (1:X)		C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
	• •	, ,			, ,			• •
1.000	68.000	30.0	3	10.600	9.173	1.202	Open Manhole	1200
2.000	69.600	135.0	3	10.600	9.159	1.141	Open Manhole	1200
1.001	26.600	200.0	4	10.500	8.915	1.235	Open Manhole	1200
1.002	24.800	40.0	5	9.900	8.295	1.255	Open Manhole	1350
1.003	8.973	300.0	9	10.000	8.240	1.385	Open Manhole	1350
3.000	35.300	290.0	8	10.000	8.453	1.322	Open Manhole	1200
4.000	42.500	100.0	8	10.000	8.450	1.250	Open Manhole	1200
3.001	9.800	150.0	9	10.000	8.313	1.387	Open Manhole	1350
1.004	6.000	300.0	10	10.000	8.143	1.407	Open Manhole	1350
1.005	2.000	300.0	11	10.000	8.136	1.414	Open Manhole	1350
1.006	2.000	300.0		10.000	8.130	1.420	Open Manhole	0

Free Flowing Outfall Details for Storm

Outfall	Outfall	C. Level	Ι.	Level	Min	D,L	W
Pipe Number	Name	(m)		(m)	I. Level (m)	(mm)	(mm)
1.006		10.000)	8.130	0.000	0	0

TOBIN Consulting Engineers		Page 5
Fairgreen House		
Fairgreen Road		4
Galway		Micro
Date 11/07/2019 10:05	Designed by Fiontan Gallagher	
File STORM DESIGN NETWORK NO	Checked by	Drainage
Micro Drainage	Network 2017.1.2	

Simulation Criteria for Storm

Volumetric Runoff Coeff 0.900 Additional Flow - % of Total Flow 10.000
Areal Reduction Factor 1.000 MADD Factor * 10m³/ha Storage 2.000
Hot Start (mins) 0 Inlet Coefficient 0.800
Hot Start Level (mm) 0 Flow per Person per Day (1/per/day) 0.000
Manhole Headloss Coeff (Global) 0.500 Run Time (mins) 60
Foul Sewage per hectare (1/s) 0.000 Output Interval (mins) 1

Number of Input Hydrographs 0 Number of Storage Structures 1 Number of Online Controls 0 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model		FSR		Profi	le Type	Summer
Return Period (years)		1		Cv (Summer)	0.900
Region	Scotland and	l Ireland		Cv (Winter)	0.840
M5-60 (mm)		16.800	Storm	Duration	(mins)	30
Ratio R		0.300				

TOBIN Consulting Engineers		Page 6
Fairgreen House		
Fairgreen Road		٧
Galway		Micro
Date 11/07/2019 10:05	Designed by Fiontan Gallagher	
File STORM DESIGN NETWORK NO	Checked by	Drainage
Micro Drainage	Network 2017.1.2	

Storage Structures for Storm

Cellular Storage Manhole: 11, DS/PN: 1.006

Invert Level (m) 6.950 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.74074 Porosity 0.40 Infiltration Coefficient Side (m/hr) 0.00000

Depth	(m)	Area	(m²)	Inf.	Area	(m²)	Depth	(m)	Area	(m²)	Inf.	Area	(m²)
	000	-	390.0			390.0 193.2	1.	300		0.0		4	93.2

TOBIN Consulting Engineers	Page 1	
Fairgreen House		
Fairgreen Road		
Galway		Micro
Date 11/07/2019 10:06	Designed by Fiontan Gallagher	Drainage
File STORM DESIGN NETWORK NO	Checked by	nanaye
Micro Drainage	Network 2017.1.2	

STORM SEWER DESIGN by the Modified Rational Method

Design Criteria for Storm

Pipe Sizes STANDARD Manhole Sizes STANDARD

FSR Rainfall Model - Scotland and Ireland

Return Period (years) 1 PIMP (%) 100

M5-60 (mm) 16.800 Add Flow / Climate Change (%) 10

Ratio R 0.300 Minimum Backdrop Height (m) 0.200

Maximum Rainfall (mm/hr) 50 Maximum Backdrop Height (m) 1.500

Maximum Time of Concentration (mins) 30 Min Design Depth for Optimisation (m) 1.200

Foul Sewage (1/s/ha) 0.000 Min Vel for Auto Design only (m/s) 0.75

Volumetric Runoff Coeff. 0.900 Min Slope for Optimisation (1:X) 500

Designed with Level Soffits

Network Design Table for Storm

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)		Base Flow (1/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
1.000	15.300	0.068	225.0	0.052	5.00	0.0	0.600	0	225	Pipe/Conduit	•
2.000	27.400	0.122	225.0	0.108	5.00	0.0	0.600	0	225	Pipe/Conduit	•
1.001 1.002	2.750 2.000	0.079 0.018	34.8 111.1	0.001	0.00		0.600	0		Pipe/Conduit Pipe/Conduit	0
1.003 1.004		0.007 0.007		0.000	0.00		0.600	0		Pipe/Conduit Pipe/Conduit	

Network Results Table

Rain		•						Cap	Flow	
(mm/hr)	(mins)	(m)	(ha)	Flow (1/s)	(l/s)	(1/s)	(m/s)	(1/s)	(1/s)	
42.29	5.29	7.625	0.052	0.0	0.0	0.7	0.87	34.5	7.9	
41.60	5.53	7.575	0.108	0.0	0.0	1.5	0.87	34.5	16.1	
41.55	5.54	7.150	0.161	0.0	0.0	2.2	2.67	189.0	23.9	
41.48	5.57	7.071	0.161	0.0	0.0	2.2	1.49	105.4	23.9	
41.38	5.60	7.053	0.161	0.0	0.0	2.2	0.90	63.8	23.9	
41.27	5.64	7.046	0.161	0.0	0.0	2.2	0.90	63.8	23.9	
	(mm/hr) 42.29 41.60 41.55 41.48 41.38	(mm/hr) (mins) 42.29 5.29 41.60 5.53 41.55 5.54 41.48 5.57 41.38 5.60	(mm/hr) (mins) (m) 42.29 5.29 7.625 41.60 5.53 7.575 41.55 5.54 7.150 41.48 5.57 7.071 41.38 5.60 7.053	(mm/hr) (mins) (m) (ha) 42.29 5.29 7.625 0.052 41.60 5.53 7.575 0.108 41.55 5.54 7.150 0.161 41.48 5.57 7.071 0.161 41.38 5.60 7.053 0.161	(mm/hr) (mins) (m) (ha) Flow (1/s) 42.29 5.29 7.625 0.052 0.0 41.60 5.53 7.575 0.108 0.0 41.55 5.54 7.150 0.161 0.0 41.48 5.57 7.071 0.161 0.0 41.38 5.60 7.053 0.161 0.0	(mm/hr) (mins) (m) (ha) Flow (1/s) (1/s) 42.29 5.29 7.625 0.052 0.0 0.0 0.0 41.60 5.53 7.575 0.108 0.0 0.0 0.0 41.55 5.54 7.150 0.161 0.0 0.0 0.0 41.48 5.57 7.071 0.161 0.0 0.0 0.0 41.38 5.60 7.053 0.161 0.0 0.0 0.0	(mm/hr) (mins) (m) (ha) Flow (1/s) (1/s) (1/s) 42.29 5.29 7.625 0.052 0.0 0.0 0.7 41.60 5.53 7.575 0.108 0.0 0.0 1.5 41.55 5.54 7.150 0.161 0.0 0.0 2.2 41.48 5.57 7.071 0.161 0.0 0.0 2.2 41.38 5.60 7.053 0.161 0.0 0.0 2.2	(mm/hr) (mins) (m) (ha) Flow (1/s) (1/s) (1/s) (m/s) 42.29 5.29 7.625 0.052 0.0 0.0 0.7 0.87 41.60 5.53 7.575 0.108 0.0 0.0 1.5 0.87 41.55 5.54 7.150 0.161 0.0 0.0 2.2 2.67 41.48 5.57 7.071 0.161 0.0 0.0 2.2 1.49 41.38 5.60 7.053 0.161 0.0 0.0 2.2 0.90	(mm/hr) (mins) (m) (ha) Flow (1/s) (1/s) (1/s) (m/s) (1/s) 42.29 5.29 7.625 0.052 0.0 0.0 0.7 0.87 34.5 41.60 5.53 7.575 0.108 0.0 0.0 1.5 0.87 34.5 41.55 5.54 7.150 0.161 0.0 0.0 2.2 2.67 189.0 41.48 5.57 7.071 0.161 0.0 0.0 2.2 1.49 105.4 41.38 5.60 7.053 0.161 0.0 0.0 2.2 0.90 63.8	(mm/hr) (mins) (m) (ha) Flow (1/s) (1/s) (m/s) (1/s) (1/s) 42.29 5.29 7.625 0.052 0.0 0.0 0.7 0.87 34.5 7.9 41.60 5.53 7.575 0.108 0.0 0.0 1.5 0.87 34.5 16.1 41.55 5.54 7.150 0.161 0.0 0.0 2.2 2.67 189.0 23.9 41.48 5.57 7.071 0.161 0.0 0.0 2.2 1.49 105.4 23.9 41.38 5.60 7.053 0.161 0.0 0.0 2.2 0.90 63.8 23.9

TOBIN Consulting Engineers		Page 2
Fairgreen House		
Fairgreen Road		
Galway		Micco
Date 11/07/2019 10:06	Designed by Fiontan Gallagher	Drainage
File STORM DESIGN NETWORK NO	Checked by	nialilade
Micro Drainage	Network 2017.1.2	

Manhole Schedules for Storm

MH Name	MH CL (m)	MH Depth (m)	MH Connection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diameter (mm)	Backdrop (mm)
1	9.000	1.375	Open Manhole	1200	1.000	7.625	225				
2	9.050	1.475	Open Manhole	1200	2.000	7.575	225				
3	9.200	2.050	Open Manhole	1200	1.001	7.150	300	1.000	7.557	225	332
								2.000	7.453	225	228
4	8.500	1.429	Open Manhole	1200	1.002	7.071	300	1.001	7.071	300	
5	8.500	1.447	Open Manhole	1200	1.003	7.053	300	1.002	7.053	300	
6	8.500	1.454	Open Manhole	1200	1.004	7.046	300	1.003	7.046	300	
	8.500	1.460	Open Manhole	0		OUTFALL		1.004	7.040	300	

TOBIN Consulting Engineers		Page 3
Fairgreen House		
Fairgreen Road		
Galway		Micro
Date 11/07/2019 10:06	Designed by Fiontan Gallagher	Drainage
File STORM DESIGN NETWORK NO	Checked by	Dialitade
Micro Drainage	Network 2017.1.2	

PIPELINE SCHEDULES for Storm

<u>Upstream Manhole</u>

PN	Hyd Sect		MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
1.000		225	1	9.000	7.625	1 150	Omen Menhele	1200
1.000	0	223	1	9.000	7.023	1.130	Open Manhole	1200
2.000	0	225	2	9.050	7.575	1.250	Open Manhole	1200
1.001	0	300	3	9.200	7.150	1.750	Open Manhole	1200
1.002	0	300	4	8.500	7.071	1.129	Open Manhole	1200
1.003	0	300	5	8.500	7.053	1.147	Open Manhole	1200
1.004	0	300	6	8.500	7.046	1.154	Open Manhole	1200

<u>Downstream Manhole</u>

PN	Length	Slope	MH	C.Level	I.Level	D.Depth	MH	MH DIAM., L*W
	(m)	(1:X)	Name	(m)	(m)	(m)	Connection	(mm)
1.000	15.300	225.0	3	9.200	7.557	1.418	Open Manhole	1200
2.000	27.400	225.0	3	9.200	7.453	1.522	Open Manhole	1200
1.001	2.750	34.8	4	8.500	7.071	1.129	Open Manhole	1200
1.002	2.000	111.1	5	8.500	7.053	1.147	Open Manhole	1200
1.003	2.000	300.0	6	8.500	7.046	1.154	Open Manhole	1200
1.004	2.000	300.0		8.500	7.040	1.160	Open Manhole	0

Free Flowing Outfall Details for Storm

Outfall	Outfall	C. Level	I. Level	Min	D,L	W	
Pipe Number	. Name	(m)	(m)	I. Level	(mm)	(mm)	
				(m)			
1.004	1	8.500	7.040	0.000	0	0	

Simulation Criteria for Storm

Volumetric Runoff Coeff	0.900	Additional Flow - % of Total Flow	10.000
Areal Reduction Factor	1.000	MADD Factor * 10m3/ha Storage	2.000
Hot Start (mins)	0	Inlet Coefficient	0.800
Hot Start Level (mm)	0	Flow per Person per Day (1/per/day)	0.000
Manhole Headloss Coeff (Global)	0.500	Run Time (mins)	60
Foul Sewage per hectare (1/s)	0.000	Output Interval (mins)	1

Number of Input Hydrographs 0 Number of Storage Structures 1 Number of Online Controls 0 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

TOBIN Consulting Engineers		Page 4
Fairgreen House		
Fairgreen Road		4
Galway		Micco
Date 11/07/2019 10:06	Designed by Fiontan Gallagher	Drainage
File STORM DESIGN NETWORK NO	Checked by	Dialilade
Micro Drainage	Network 2017.1.2	

Synthetic Rainfall Details

Rainfall Model		FSR		Prof	ile Type	Summer
Return Period (years)		1		Cv	(Summer)	0.900
Region	Scotland and	Ireland		Cv	(Winter)	0.840
M5-60 (mm)		16.800	Storm	Duratio	n (mins)	30
Ratio R		0.300				

TOBIN Consulting Engineers		Page 5
Fairgreen House		
Fairgreen Road		4
Galway		Micro
Date 11/07/2019 10:06	Designed by Fiontan Gallagher	Drainage
File STORM DESIGN NETWORK NO	Checked by	nanaye
Micro Drainage	Network 2017.1.2	

Storage Structures for Storm

Cellular Storage Manhole: 6, DS/PN: 1.004

Invert Level (m) 5.850 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.33959 Porosity 0.40 Infiltration Coefficient Side (m/hr) 0.00000

Depth	(m)	Area	(m²)	Inf.	Area	(m²)	Depth	(m)	Area	(m²)	Inf.	Area	(m²)
	000		60.0			60.0 98.0	1.	.100		0.0			98.0

APPENDIX B

Foul Drainage Design Calculations

TOBIN Consulting Engineers		Page 1
Fairgreen House	Rosshill SHD	
Fairgreen Road		4
Galway		Micro
Date 05/12/2019 17:43	Designed by Richard Daly	
File FOUL DRAINAGE WITH ADDITIONAL CAPACITY FO	Checked by Brendan Heaney	Drainage
Micro Drainage	Network 2017.1.2	

FOUL SEWERAGE DESIGN

Design Criteria for Foul - Main

Pipe Sizes STANDARD Manhole Sizes STANDARD

Industrial Flow (1/s/ha) 0.00 Domestic (1/s/ha) 0.00 Maximum Backdrop Height (m) 1.500 Industrial Peak Flow Factor 0.00 Domestic Peak Flow Factor 6.00 Min Design Depth for Optimisation (m) 1.200 Flow Per Person (1/per/day) 150.00 Add Flow / Climate Change (%) 0 Min Vel for Auto Design only (m/s) 0.75 Persons per House 2.70 Minimum Backdrop Height (m) 0.200 Min Slope for Optimisation (1:X) 300

Designed with Level Soffits

Network Design Table for Foul - Main

PN	Length	Fall	STope	Area	Houses	Ва	ase	ĸ	HYD	DIA	Section Type	Auto
	(m)	(m)	(1:X)	(ha)		Flow	(1/s)	(mm)	SECT	(mm)		Design
	33.700 52.300										Pipe/Conduit Pipe/Conduit	_

Network Results Table

PN	US/IL	Σ Area	Σ Base	Σ Hse	Add Flow	P.Dep	P.Vel	Vel	Cap	Flow
	(m)	(ha)	Flow (1/s)		(1/s)	(mm)	(m/s)	(m/s)	(1/s)	(1/s)
F1.000	19.150	0.000	0.0	8	0.0	10	0.43	1.48	26.2	0.2
F1.001	18.187	0.000	0.0	34	0.0	20	0.66	1.39	24.5	1.0

TOBIN Consulting Engineers		Page 2
Fairgreen House	Rosshill SHD	
Fairgreen Road		4
Galway		Micco
Date 05/12/2019 17:43	Designed by Richard Daly	Designado
File FOUL DRAINAGE WITH ADDITIONAL CAPACITY FO	Checked by Brendan Heaney	Drainage
Micro Drainage	Network 2017.1.2	

PN	Length (m)	Fall (m)	Slope (1:X)	Area (ha)	Houses	ase (1/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
F1.002	38.120	0.318	120.0	0.000	1	0.0	1.500	0	150	Pipe/Conduit	ø
F2.000	20.510	0.342	60.0	0.000	3	0.0	1.500	0	150	Pipe/Conduit	8
	48.000 30.400			0.000	11 5		1.500 1.500	0		Pipe/Conduit Pipe/Conduit	
	37.400 30.700 31.600	0.614	50.0	0.000 0.000 0.000	18 23 2	0.0	1.500 1.500 1.500	0 0	150	Pipe/Conduit Pipe/Conduit Pipe/Conduit	0 0

Network Results Table

PN	US/IL (m)	Σ Area (ha)	Σ Base Flow (1/s)	Σ Hse	Add Flow (1/s)	P.Dep (mm)		Vel (m/s)	Cap (1/s)	Flow (1/s)
F1.002	16.880	0.000	0.0	35	0.0	27	0.45	0.80	14.1	1.0
F2.000	17.200	0.000	0.0	3	0.0	7	0.26	1.13	20.0	0.1
F1.003 F1.004	16.562 15.495	0.000	0.0	49 54	0.0	25 32	0.71	1.31	23.1 15.5	1.4 1.5
F3.000 F3.001 F3.002	15.527	0.000 0.000 0.000	0.0 0.0 0.0	18 41 43	0.0 0.0 0.0	17 24 30	0.47 0.65 0.47	1.13 1.24 0.77	20.0 21.9 13.6	0.5 1.2 1.2

TOBIN Consulting Engineers		Page 3
Fairgreen House	Rosshill SHD	
Fairgreen Road		4
Galway		Micco
Date 05/12/2019 17:43	Designed by Richard Daly	Designado
File FOUL DRAINAGE WITH ADDITIONAL CAPACITY FO	Checked by Brendan Heaney	Drainage
Micro Drainage	Network 2017.1.2	

PN	Length (m)	Fall (m)	Slope (1:X)	Area (ha)	Houses	ase (1/s)	k (mm)	HYD SECT		Section Type	Auto Design
F3.003	30.400	0.234	130.0	0.000	0	0.0	1.500	0	150	Pipe/Conduit	₽
	24.700 38.600				2 2		1.500 1.500	0		Pipe/Conduit Pipe/Conduit	9
	49.200 33.600			0.000	13 7		1.500 1.500	0		Pipe/Conduit Pipe/Conduit	0 8
	11.000 12.900				0		1.500 1.500	0		Pipe/Conduit Pipe/Conduit	8

Network Results Table

PN	US/IL (m)	Σ Area (ha)	Σ Base Flow (1/s)	Σ Hse	Add Flow (1/s)	P.Dep (mm)		Vel (m/s)	Cap (1/s)	Flow (1/s)
F3.003	14.670	0.000	0.0	43	0.0	30	0.47	0.77	13.6	1.2
F1.005	14.436	0.000	0.0	99	0.0	46	0.60	0.77	13.6	2.8
F1.006	14.246	0.000	0.0	101	0.0	47	0.61	0.77	13.6	2.8
F4.000	17.250	0.000	0.0	13	0.0	13	0.48	1.39	24.5	0.4
F4.001	16.020	0.000	0.0	20	0.0	15	0.58	1.48	26.2	0.6
F1.007	13.949	0.000	0.0	121	0.0	51	0.64	0.77	13.6	3.4
F1.008	13.865	0.000	0.0	121	0.0	51	0.64	0.77	13.6	3.4

TOBIN Consulting Engineers		Page 4
Fairgreen House	Rosshill SHD	
Fairgreen Road		4
Galway		Micro
Date 05/12/2019 17:43	Designed by Richard Daly	
File FOUL DRAINAGE WITH ADDITIONAL CAPACITY FO	Checked by Brendan Heaney	Drainage
Micro Drainage	Network 2017.1.2	

Auto Design	Section Type		HYD SECT	k (mm)	ase (1/s)	Houses	Area (ha)	Slope (1:X)	Fall (m)	Length (m)	PN
ø	Pipe/Conduit	225	0	1.500	0.0	2	0.000	130.0	0.303	39.400	F1.009
ö	Pipe/Conduit	225	0	1.500	0.0	2	0.000	200.0	0.164	32.800	F1.010
ð	Pipe/Conduit	150	0	1.500	0.0	9	0.000	30.0	2.027	60.800	F5.000
•	Pipe/Conduit	225	0	1.500	0.0	0	0.000	200.0	0.187	37.400	F1.011
ŏ	Pipe/Conduit	225	0	1.500	0.0	14	0.000	200.0	0.159	31.870	F1.012
A	Pipe/Conduit	150	0	1.500	0.0	13	0.000	40.0	0.719	28.770	F6.000

Network Results Table

PN	US/IL (m)	Σ Area (ha)	Σ Base Flow (1/s)		Add Flow (1/s)	-		Vel (m/s)	-	Flow (1/s)
F1.009	13.690	0.000	0.0	123	0.0	45	0.62	1.01	40.0	3.5
F1.010	13.387	0.000	0.0	125	0.0	50	0.53	0.81	32.2	3.5
F5.000	16.650	0.000	0.0	9	0.0	10	0.47	1.60	28.3	0.3
F1.011	13.223	0.000	0.0	134	0.0	52	0.54	0.81	32.2	3.8
F1.012	13.036	0.000	0.0	148	0.0	55	0.56	0.81	32.2	4.2
F6.000	15.300	0.000	0.0	13	0.0	13	0.48	1.39	24.5	0.4

TOBIN Consulting Engineers		Page 5
Fairgreen House	Rosshill SHD	
Fairgreen Road		4
Galway		Micco
Date 05/12/2019 17:43	Designed by Richard Daly	Designation
File FOUL DRAINAGE WITH ADDITIONAL CAPACITY FO	Checked by Brendan Heaney	Drainage
Micro Drainage	Network 2017.1.2	

PN	Length	Fall	Slope	Area	Houses	Ва	ase	k	HYD	DIA	Section Type	Auto
	(m)	(m)	(1:X)	(ha)		Flow	(1/s)	(mm)	SECT	(mm)		Design
F1.013	41.300	0.207	200.0	0.000	27		0.0	1.500	0	225	Pipe/Conduit	o
F1.014	19.530	0.977	20.0	0.000	0		0.0	1.500	0	225	Pipe/Conduit	-
F1.015	19.710	0.986	20.0	0.000	0		0.0	1.500	0	225	Pipe/Conduit	ĕ
F1.016	5.000	0.097	51.5	0.000	0		0.0	1.500	0	225	Pipe/Conduit	ĕ
F7.000	23.700	0.948	25.0	0.000	5		0.0	1.500	0	150	Pipe/Conduit	^
F7.001	19.000	0.760	25.0	0.000	2		0.0	1.500	0	150	Pipe/Conduit	ð
F1.017	43.900	0.798	55.0	0.000	3		0.0	1.500	0	225	Pipe/Conduit	
F1.018	53.900	0.539	100.0	0.000	29			1.500	0		Pipe/Conduit	*

Network Results Table

PN	US/IL (m)	Σ Area (ha)	Σ Base Flow (1/s)	Σ Hse	Add Flow (1/s)	P.Dep (mm)	P.Vel (m/s)		Cap (1/s)	Flow (1/s)
F1.013	12.877	0.000	0.0	188	0.0	62	0.60	0.81	32.2	5.3
F1.014	12.670	0.000	0.0	188	0.0	35	1.35	2.57	102.3	5.3
F1.015	10.000	0.000	0.0	188	0.0	35	1.35	2.57	102.3	5.3
F1.016	9.014	0.000	0.0	188	0.0	44	0.97	1.60	63.7	5.3
F7.000	10.700	0.000	0.0	5	0.0	8	0.42	1.76	31.0	0.1
F7.001	9.752	0.000	0.0	7	0.0	9	0.47	1.76	31.0	0.2
F1.017 F1.018	8.917 8.119	0.000	0.0	198 227	0.0	46 57	0.96	1.55	61.6 45.6	5.6 6.4
		2.000	0.0	,	0.0	<i>J</i> ,		_,	-3.0	J

TOBIN Consulting Engineers		Page 6
Fairgreen House	Rosshill SHD	
Fairgreen Road		
Galway		Micco
Date 05/12/2019 17:43	Designed by Richard Daly	Designation
File FOUL DRAINAGE WITH ADDITIONAL CAPACITY FO	Checked by Brendan Heaney	Drainage
Micro Drainage	Network 2017.1.2	

PN	Length	Fall	Slope	Area	Houses	Ва	se	k	HYD	DIA	Section Type	Auto
	(m)	(m)	(1:X)	(ha)		Flow	(1/s)	(mm)	SECT	(mm)		Desigr
F8.000	37.200	0.744	50.0	0.000	10		0.0	1.500	0	150	Pipe/Conduit	0
F8.001	38.600	0.772	50.0	0.000	3		0.0	1.500	0	150	Pipe/Conduit	ĕ
F8.002	64.000	0.640	100.0	0.000	7		0.0	1.500	0	150	Pipe/Conduit	<u>.</u>
F9.000	60.600	1.212	50.0	0.000	25		0.0	1.500	0	150	Pipe/Conduit	***
F8.003	34.400	0.344	100.0	0.000	0		0.0	1.500	0	150	Pipe/Conduit	₩
F8.004	23.600	0.455	51.9	0.000	0		0.0	1.500	0	150	Pipe/Conduit	9

Network Results Table

PN	US/IL (m)	Σ Area (ha)	Σ Base Flow (1/s)	Σ Hse	Add Flow (1/s)	P.Dep (mm)			Cap (1/s)	Flow (1/s)
F8.000 F8.001 F8.002	18.706	0.000 0.000 0.000	0.0 0.0 0.0	10 13 20	0.0 0.0 0.0	12 14 20	0.41 0.45 0.41	1.24 1.24 0.88	21.9 21.9 15.5	0.3 0.4 0.6
F9.000	19.250	0.000	0.0	25	0.0	19	0.55	1.24	21.9	0.7
F8.003 F8.004		0.000	0.0	45 45	0.0	29 25	0.52	0.88	15.5 21.5	1.3

TOBIN Consulting Engineers		Page 7
Fairgreen House	Rosshill SHD	
Fairgreen Road		4
Galway		Micco
Date 05/12/2019 17:43	Designed by Richard Daly	Designado
File FOUL DRAINAGE WITH ADDITIONAL CAPACITY FO	Checked by Brendan Heaney	Drainage
Micro Drainage	Network 2017.1.2	

PN	Length (m)	Fall (m)	Slope (1:X)	Area (ha)	Houses	ase (1/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
F10.000	34.100	0.853	40.0	0.000	5	0.0	1.500	0	225	Pipe/Conduit	a
F10.001	44.100	1.103	40.0	0.000	5	0.0	1.500	0	225	Pipe/Conduit	ð
F8.005	8.500	0.131	65.0	0.000	0	0.0	1.500	0	225	Pipe/Conduit	ð
F8.006	43.900	1.463	30.0	0.000	4	0.0	1.500	0	225	Pipe/Conduit	0
F8.007	8.600	0.287	30.0	0.000	0	0.0	1.500	0	225	Pipe/Conduit	₩
F8.008	31.400	0.563	55.8	0.000	1	0.0	1.500	0	225	Pipe/Conduit	ď
F11.000	27.700	0.504	55.0	0.000	4	0.0	1.500	0	225	Pipe/Conduit	A

Network Results Table

PN	US/IL	Σ Area	Σ Base	Σ Hse	Add Flow	P.Dep	P.Vel	Vel	Cap	Flow
	(m)	(ha)	Flow (1/s)		(1/s)	(mm)	(m/s)	(m/s)	(1/s)	(1/s)
F10.000	18.475	0.000	0.0	5	0.0	8	0.33	1.82	72.3	0.1
F10.001	17.523	0.000	0.0	10	0.0	10	0.42	1.82	72.3	0.3
F8.005	16.421	0.000	0.0	55	0.0	26	0.61	1.43	56.7	1.5
F8.006	16.200	0.000	0.0	59	0.0	22	0.82	2.10	83.5	1.7
F8.007	14.250	0.000	0.0	59	0.0	22	0.82	2.10	83.6	1.7
F8.008	13.963	0.000	0.0	60	0.0	26	0.66	1.54	61.2	1.7
F11.000	13.975	0.000	0.0	4	0.0	8	0.28	1.55	61.6	0.1

TOBIN Consulting Engineers		Page 8
Fairgreen House	Rosshill SHD	
Fairgreen Road		
Galway		Micco
Date 05/12/2019 17:43	Designed by Richard Daly	Designation
File FOUL DRAINAGE WITH ADDITIONAL CAPACITY FO	Checked by Brendan Heaney	Drainage
Micro Drainage	Network 2017.1.2	

PN	Length (m)	Fall (m)	Slope (1:X)	Area (ha)	Houses	ise (1/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
	21.900			0.000	0 10		1.500	0		Pipe/Conduit Pipe/Conduit	8
F12.000 F12.001	49.150	0.819	60.0	0.000	8 2	0.0	1.500 1.500	0	150	Pipe/Conduit Pipe/Conduit	**************************************
	30.430 23.900				3		1.500 1.500	0		Pipe/Conduit Pipe/Conduit	6
F13.000	39.600	0.660	60.0	0.000	33	0.0	1.500	0	150	Pipe/Conduit	₽

Network Results Table

PN	US/IL (m)	Σ Area (ha)	Σ Base Flow (1/s)	Σ Hse	Add Flow (1/s)	P.Dep (mm)	P.Vel (m/s)		Cap (1/s)	Flow (1/s)
F8.009 F8.010		0.000	0.0	64 74	0.0	22 24	0.90 0.94	2.30	91.5 91.5	1.8
F12.000 F12.001	9.850 9.031	0.000	0.0	8 10	0.0	12 14	0.36	1.13	20.0 15.5	0.2
F8.011 F8.012	8.732 8.529	0.000	0.0	87 90	0.0	39 40	0.53 0.53	0.94 0.94	37.2 37.2	2.4
F13.000	8.900	0.000	0.0	33	0.0	22	0.57	1.13	20.0	0.9

TOBIN Consulting Engineers		Page 9
Fairgreen House	Rosshill SHD	
Fairgreen Road		
Galway		Micco
Date 05/12/2019 17:43	Designed by Richard Daly	Desipage
File FOUL DRAINAGE WITH ADDITIONAL CAPACITY FO	Checked by Brendan Heaney	Drainage
Micro Drainage	Network 2017.1.2	

Auto Design	Section Type		HYD SECT		Base (1/s)	Houses	Area (ha)	Slope (1:X)	Fall (m)	Length (m)	PN
.	Pipe/Conduit	150	0	1.500	0.0	3	0.000	120.0	0.233	27.900	F13.001
•	Pipe/Conduit	225	0	1.500	0.0	7	0.000	150.0	0.368	55.200	F8.013
₫*	Pipe/Conduit	150	0	1.500	0.0	8	0.000	60.0	0.935	56.100	F14.000
•	Pipe/Conduit	150	0	1.500	0.0	0	0.000	100.0	0.092	9.200	F14.001
•	Pipe/Conduit	225	0	1.500	0.0	0	0.000	100.0	0.091	9.100	F8.014
•	Pipe/Conduit	300	0	1.500	0.0	0	0.000	267.4	0.043	11.500	F1.019

Network Results Table

PN	US/IL (m)		Σ Base Flow (1/s)	Σ Hse	Add Flow (1/s)	-	P.Vel (m/s)		-	
F13.001	8.240	0.000	0.0	36	0.0	27	0.46	0.80	14.1	1.0
F8.013	7.933	0.000	0.0	133	0.0	48	0.60	0.94	37.2	3.7
F14.000	8.250	0.000	0.0	8	0.0	12	0.36	1.13	20.0	0.2
F14.001	7.315	0.000	0.0	8	0.0	13	0.30	0.88	15.5	0.2
F8.014	7.148	0.000	0.0	141	0.0	45	0.70	1.15	45.6	4.0
F1.019	6.982	0.000	0.0	368	0.0	84	0.64	0.85	59.8	10.4

TOBIN Consulting Engineers		Page 10
Fairgreen House	Rosshill SHD	
Fairgreen Road		
Galway		Micro
Date 05/12/2019 17:43	Designed by Richard Daly	and the second s
File FOUL DRAINAGE WITH ADDITIONAL CAPACITY FO	Checked by Brendan Heaney	Drainage
Micro Drainage	Network 2017.1.2	

MH Name		MH (m)	MH Depth (m)	Coni	MH nection	MH Diam.,L*W (mm)	1	PN	Pipe (Inver Level	:t	Diameter (mm)	PN	Pipes Inve Level	rt	Diameter (mm)	Backdrop (mm)
FMH21	20	.500	1.350	Open	Manhole	1200	F1	.000	19.	150	150					
FMH20	19	.450	1.263	Open	Manhole	1200	F1	.001	18.	187	150	F1.000	18.	187	150	
FMH19	18	.150	1.270	Open	Manhole	1200	F1	.002	16.	880	150	F1.001	16.	880	150	
FMH18.1	18	.550	1.350	Open	Manhole	1200	F2	.000	17.	200	150					
FMH18	18	.250	1.688	Open	Manhole	1200	F1	.003	16.	562	150	F1.002	16.	562	150	
												F2.000	16.	858	150	296
F17	16	.850	1.355	Open	Manhole	1200	F1	.004	15.	495	150	F1.003	15.	495	150	
FMH16.4	17	.500	1.350	Open	Manhole	1200	F3	.000	16.	150	150					
FMH16.3	17	.000	1.473	Open	Manhole	1200	F3	.001	15.	527	150	F3.000	15.	527	150	
FMH16.2	16	.250	1.337	Open	Manhole	1200	F3	.002	14.	913	150	F3.001	14.	913	150	
FMH16.1	16	.300	1.630	Open	Manhole	1200	F3	.003	14.	670	150	F3.002	14.	670	150	
FMH16	16	.200	1.764	Open	Manhole	1200	F1	.005	14.	436	150	F1.004	15.	191	150	755
												F3.003	14.	436	150	
FMH15	16	.100	1.854	Open	Manhole	1200	F1	.006	14.	246	150	F1.005	14.	246	150	
FMH14.2	18	.800	1.550	Open	Manhole	1200	F4	.000	17.	250	150					
FMH14.1	17	.250	1.230	Open	Manhole	1200	F4	.001	16.	020	150	F4.000	16.	020	150	
FMH14	16	.000	2.051	Open	Manhole	1200	F1	.007	13.	949	150	F1.006	13.	949	150	
												F4.001	15.	060	150	1111
FMH13	15	.750	1.885	Open	Manhole	1200	F1	.008	13.	865	150	F1.007	13.	865	150	

TOBIN Consulting Engineers		Page 11
Fairgreen House	Rosshill SHD	
Fairgreen Road		
Galway		Micro
Date 05/12/2019 17:43	Designed by Richard Daly	And the second s
File FOUL DRAINAGE WITH ADDITIONAL CAPACITY FO	Checked by Brendan Heaney	Drainage
Micro Drainage	Network 2017.1.2	

MH Name	MH CL (m)	MH Depth (m)	Coni	MH nection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diameter (mm)	Backdrop (mm)
FMH12	15.550	1.860	Open	Manhole	1200	F1.009	13.690	225	F1.008	13.765	150	
FMH11	14.900	1.513	Open	Manhole	1200	F1.010	13.387	225	F1.009	13.387	225	
FMH10.1	18.000	1.350	Open	Manhole	1200	F5.000	16.650	150				
FMH10	15.900	2.677	Open	Manhole	1200	F1.011	13.223	225	F1.010	13.223	225	
									F5.000	14.623	150	1325
FMH9	15.000	1.964	Open	Manhole	1200	F1.012	13.036	225	F1.011	13.036	225	
FMH8.1	16.850	1.550	Open	Manhole	1200	F6.000	15.300	150				
FMH8	15.800	2.923	Open	Manhole	1200	F1.013	12.877	225	F1.012	12.877	225	
									F6.000	14.581	150	1629
FMH 7	14.900	2.230	Open	Manhole	1200	F1.014	12.670	225	F1.013	12.670	225	
FMH 6	12.600	2.600	Open	Manhole	1200	F1.015	10.000	225	F1.014	11.694	225	1694
FMH 5	10.200	1.186	Open	Manhole	1200	F1.016	9.014	225	F1.015	9.014	225	
FMH 4.2	12.400	1.700	Open	Manhole	1200	F7.000	10.700	150				
FMH 4.1	11.100	1.348	Open	Manhole	1200	F7.001	9.752	150	F7.000	9.752	150	
FMH 4.0	10.200	1.283	Open	Manhole	1200	F1.017	8.917	225	F1.016	8.917	225	
									F7.001	8.992	150	
FMH 3	9.500	1.381	Open	Manhole	1200	F1.018	8.119	225	F1.017	8.119	225	
FMH 2.15	20.800	1.350	Open	Manhole	1200	F8.000	19.450	150				
FMH 2.14	20.100	1.394	Open	Manhole	1200	F8.001	18.706	150	F8.000	18.706	150	
					©1982	2-2017	XP Solut	ions				

TOBIN Consulting Engineers		Page 12
Fairgreen House	Rosshill SHD	
Fairgreen Road		~
Galway		Micco
Date 05/12/2019 17:43	Designed by Richard Daly	Desipage
File FOUL DRAINAGE WITH ADDITIONAL CAPACITY FO	Checked by Brendan Heaney	Drainage
Micro Drainage	Network 2017.1.2	

MH Name	MH CL (m)	MH Depth (m)	MH Connection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diameter (mm)	Backdrop (mm)
FMH 2.13	19.200	1.266	Open Manhole	1200	F8.002	17.934	150	F8.001	17.934	150	
FMH 2.12 A	20.600	1.350	Open Manhole	1200	F9.000	19.250	150				
FMH 2.12	19.400	2.106	Open Manhole	1200	F8.003	17.294	150	F8.002	17.294	150	
								F9.000	18.038	150	744
FMH 2.11	18.500	1.550	Open Manhole	1200	F8.004	16.950	150	F8.003	16.950	150	
FMH 2.10 B	19.900	1.425	Open Manhole	1200	F10.000	18.475	225				
FMH 2.10 A	19.000	1.477	Open Manhole	1200	F10.001	17.523	225	F10.000	17.623	225	100
FMH 2.10	17.900	1.480	Open Manhole	1200	F8.005	16.421	225	F8.004	16.496	150	
								F10.001	16.421	225	
FMH 2.9	17.850	1.650	Open Manhole	1200	F8.006	16.200	225	F8.005	16.290	225	90
FMH 2.8	16.250	2.000	Open Manhole	1200	F8.007	14.250	225	F8.006	14.737	225	487
FMH 2.7	15.400	1.437	Open Manhole	1200	F8.008	13.963	225	F8.007	13.963	225	
FMH 2.6 A	15.600	1.625	Open Manhole	1200	F11.000	13.975	225				
FMH 2.6	14.900	1.500	Open Manhole	1200	F8.009	13.400	225	F8.008	13.400	225	
								F11.000	13.471	225	71
FMH 2.5	13.950	1.626	Open Manhole	1200	F8.010	12.324	225	F8.009	12.524	225	200
FMH 2.4 B	11.000	1.150	Open Manhole	1200	F12.000	9.850	150				
FMH 2.4 A	10.550	1.519	Open Manhole	1200	F12.001	9.031	150	F12.000	9.031	150	
FMH 2.4	10.600	1.868	Open Manhole	1200	F8.011	8.732	225	F8.010	9.132	225	400
				©1982	2-2017	XP Soluti	ons				

TOBIN Consulting Engineers		Page 13	
Fairgreen House	Rosshill SHD		
Fairgreen Road		4	
Galway		Micro	
Date 05/12/2019 17:43	Designed by Richard Daly		
File FOUL DRAINAGE WITH ADDITIONAL CAPACITY FO	Checked by Brendan Heaney	Drainage	
Micro Drainage	Network 2017.1.2		

MH Name	MH CL (m)	MH Depth (m)		MH nection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diameter (mm)	Backdrop (mm)
									F12.001	8.807	150	
FMH 2.3	10.450	1.921	Open	Manhole	1200	F8.012	8.529	225	F8.011	8.529	225	
FMH 2.2 B	10.250	1.350	Open	Manhole	1200	F13.000	8.900	150				
FMH 2.2 A	9.850	1.610	Open	Manhole	1200	F13.001	8.240	150	F13.000	8.240	150	
FMH 2.2	10.000	2.068	Open	Manhole	1200	F8.013	7.933	225	F8.012	8.370	225	437
									F13.001	8.008	150	
FMH 2.1 B	9.400	1.150	Open	Manhole	1200	F14.000	8.250	150				
FMH 2.1 A	9.100	1.785	Open	Manhole	1200	F14.001	7.315	150	F14.000	7.315	150	
FMH 2.1	9.000	1.852	Open	Manhole	1200	F8.014	7.148	225	F8.013	7.565	225	417
									F14.001	7.223	150	
FMH 2.0	9.000	2.018	Open	Manhole	1200	F1.019	6.982	300	F1.018	7.580	225	523
									F8.014	7.057	225	
FMH 1	0.000		Open	Manhole	0		OUTFALL		F1.019	6.939	300	

TOBIN Consulting Engineers		Page 14
Fairgreen House	Rosshill SHD	
Fairgreen Road		
Galway		Micro
Date 05/12/2019 17:43	Designed by Richard Daly	
File FOUL DRAINAGE WITH ADDITIONAL CAPACITY FO	Checked by Brendan Heaney	Drainage
Micro Drainage	Network 2017.1.2	•

Upstream Manhole

PN	Hyd Sect	Diam (mm)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
F1.000	0	150	FMH21	20.500	19.150	1.200	Open Manhole	1200
F1.001	0	150	FMH20	19.450	18.187	1.113	Open Manhole	1200
F1.002	0	150	FMH19	18.150	16.880	1.120	Open Manhole	1200
F2.000	0	150	FMH18.1	18.550	17.200	1.200	Open Manhole	1200
F1.003	0	150	FMH18	18.250	16.562	1.538	Open Manhole	1200
F1.004	0	150	F17	16.850	15.495	1.205	Open Manhole	1200

Downstream Manhole

PN	Length (m)	Slope (1:X)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
F1.000	33.700	35.0	FMH20	19.450	18.187	1.113	Open Manhole	1200
F1.001	52.300	40.0	FMH19	18.150	16.880	1.120	Open Manhole	1200
F1.002	38.120	120.0	FMH18	18.250	16.562	1.538	Open Manhole	1200
F2.000	20.510	60.0	FMH18	18.250	16.858	1.242	Open Manhole	1200
	48.000 30.400	45.0 100.0	F17 FMH16	16.850 16.200	15.495 15.191		Open Manhole Open Manhole	1200 1200

TOBIN Consulting Engineers		Page 15
Fairgreen House	Rosshill SHD	
Fairgreen Road		4
Galway		Mirro
Date 05/12/2019 17:43	Designed by Richard Daly	micic
File FOUL DRAINAGE WITH ADDITIONAL CAPACITY FO	Checked by Brendan Heaney	Drainage
Micro Drainage	Network 2017.1.2	

Upstream Manhole

PN	Hyd Sect	Diam (mm)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
F3.000	0	150	FMH16.4	17.500	16.150	1.200	Open Manhole	1200
F3.001	0	150	FMH16.3	17.000	15.527	1.323	Open Manhole	1200
F3.002	0	150	FMH16.2	16.250	14.913	1.187	Open Manhole	1200
F3.003	0	150	FMH16.1	16.300	14.670	1.480	Open Manhole	1200
F1.005	0	150	FMH16	16.200	14.436	1.614	Open Manhole	1200
F1.006	0	150	FMH15	16.100	14.246	1.704	Open Manhole	1200
F4.000	0	150	FMH14.2	18.800	17.250	1.400	Open Manhole	1200

Downstream Manhole

PN	Length (m)	Slope (1:X)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
F3.000	37.400	60.0	FMH16.3	17.000	15.527	1.323	Open Manhole	1200
F3.001	30.700	50.0	FMH16.2	16.250	14.913	1.187	Open Manhole	1200
F3.002	31.600	130.0	FMH16.1	16.300	14.670	1.480	Open Manhole	1200
F3.003	30.400	130.0	FMH16	16.200	14.436	1.614	Open Manhole	1200
F1.005	24.700	130.0	FMH15	16.100	14.246	1.704	Open Manhole	1200
F1.006	38.600	130.0	FMH14	16.000	13.949	1.901	Open Manhole	1200
F4.000	49.200	40.0	FMH14.1	17.250	16.020	1.080	Open Manhole	1200

TOBIN Consulting Engineers		Page 16
Fairgreen House	Rosshill SHD	
Fairgreen Road		4
Galway		Micro
Date 05/12/2019 17:43	Designed by Richard Daly	
File FOUL DRAINAGE WITH ADDITIONAL CAPACITY FO	Checked by Brendan Heaney	Drainage
Micro Drainage	Network 2017.1.2	

Upstream Manhole

PN	Hyd Sect	Diam (mm)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
F4.001	0	150	FMH14.1	17.250	16.020	1.080	Open Manhole	1200
F1.007 F1.008 F1.009 F1.010	0 0	150 150 225 225	FMH14 FMH13 FMH12 FMH11	16.000 15.750 15.550 14.900	13.949 13.865 13.690 13.387	1.735 1.635	Open Manhole Open Manhole Open Manhole Open Manhole	1200 1200 1200 1200
F5.000	0	150	FMH10.1	18.000	16.650	1.200	Open Manhole	1200

Downstream Manhole

PN	Length (m)	Slope (1:X)		C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	AM., L*W
F4.001	33.600	35.0	FMH14	16.000	15.060	0.790	Open Manhole	1200
F1.008 F1.009	39.400	130.0 130.0	FMH12 FMH11		13.387	1.635 1.288	Open Manhole Open Manhole Open Manhole Open Manhole	1200 1200 1200 1200
F5.000	60.800	30.0	FMH10	15.900	14.623	1.127	Open Manhole	1200

TOBIN Consulting Engineers		Page 17
Fairgreen House	Rosshill SHD	
Fairgreen Road		4
Galway		Micro
Date 05/12/2019 17:43	Designed by Richard Daly	And the second of the second o
File FOUL DRAINAGE WITH ADDITIONAL CAPACITY FO	Checked by Brendan Heaney	Drainage
Micro Drainage	Network 2017.1.2	

Upstream Manhole

PN	Hyd Sect	Diam (mm)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
F1.011	0	225	FMH10	15.900	13.223	2.452	Open Manhole	1200
F1.012	0	225	FMH9	15.000	13.036	1.739	Open Manhole	1200
F6.000	0	150	FMH8.1	16.850	15.300	1.400	Open Manhole	1200
F1.013	0	225	FMH8	15.800	12.877	2.698	Open Manhole	1200
F1.014	0	225	FMH 7	14.900	12.670	2.005	Open Manhole	1200
F1.015	0	225	FMH 6	12.600	10.000	2.375	Open Manhole	1200
F1.016	0	225	FMH 5	10.200	9.014	0.961	Open Manhole	1200

Downstream Manhole

PN	Length (m)	Slope (1:X)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
F1.011	37.400	200.0	FMH9	15.000	13.036	1.739	Open Manhole	1200
F1.012	31.870	200.0	FMH8	15.800	12.877	2.698	Open Manhole	1200
F6.000	28.770	40.0	FMH8	15.800	14.581	1.069	Open Manhole	1200
F1.013	41.300	200.0	FMH 7	14.900	12.670	2.005	Open Manhole	1200
F1.014	19.530	20.0	FMH 6	12.600	11.694	0.681	Open Manhole	1200
F1.015	19.710	20.0	FMH 5	10.200	9.014	0.961	Open Manhole	1200
F1.016	5.000	51.5	FMH 4.0	10.200	8.917	1.058	Open Manhole	1200

TOBIN Consulting Engineers		Page 18
Fairgreen House	Rosshill SHD	
Fairgreen Road		4
Galway		Micco
Date 05/12/2019 17:43	Designed by Richard Daly	Designado
File FOUL DRAINAGE WITH ADDITIONAL CAPACITY FO	Checked by Brendan Heaney	Drainage
Micro Drainage	Network 2017.1.2	

Upstream Manhole

PN	Hyd	Diam	MH	C.Level	I.Level	D.Depth	MH	MH DIAM., L*W
	Sect	(mm)	Name	(m)	(m)	(m)	Connection	(mm)
F7.000	0	150	FMH 4.2	12.400	10.700	1.550	Open Manhole	1200
F7.001	0	150	FMH 4.1	11.100	9.752	1.198	Open Manhole	1200
							-	
F1.017	0	225	FMH 4.0	10.200	8.917	1.058	Open Manhole	1200
F1.018	0	225	FMH 3	9.500	8.119		Open Manhole	1200
F1.010	U	223	rmn 3	9.500	0.119	1.150	Open Mannore	1200
F8.000	0	150	FMH 2.15	20.800	19.450	1.200	Open Manhole	1200
F8.001	0	150	FMH 2.14	20.100	18.706	1.244	Open Manhole	1200

Downstream Manhole

PN	Length	Slope	MH	C.Level	I.Level	D.Depth	MH	MH	DIAM.,	L*W
	(m)	(1:X)	Name	(m)	(m)	(m)	Connection		(mm)	
F7 000	23.700	25.0	FMH 4.1	11.100	9.752	1 198	Open Manhole			1200
							-			
F. / . 001	19.000	25.0	FMH 4.0	10.200	8.992	1.058	Open Manhole			1200
F1.017	43.900	55.0	FMH 3	9.500	8.119	1.156	Open Manhole			1200
F1.018	53.900	100.0	FMH 2.0	9.000	7.580	1.195	Open Manhole			1200
							-			
E0 000	37.200	E0 0	FMH 2.14	20 100	18.706	1 244	Onen Membele			1200
F8.000	37.200	50.0	FMH 2.14	20.100			Open Manhole			1200
F8.001	38.600	50.0	FMH 2.13	19.200	17.934	1.116	Open Manhole			1200
			©1	982-201	7 XP Sc	lutions	3			
			ΘI	902-201	/ AP SC	TULTOIIS	;			

TOBIN Consulting Engineers		Page 19
Fairgreen House	Rosshill SHD	
Fairgreen Road		4
Galway		Micro
Date 05/12/2019 17:43	Designed by Richard Daly	Desinado
File FOUL DRAINAGE WITH ADDITIONAL CAPACITY FO	Checked by Brendan Heaney	Dialilacie
Micro Drainage	Network 2017.1.2	

Upstream Manhole

PN	Hyd Sect	Diam (mm)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
F8.002	0	150	FMH 2.13	19.200	17.934	1.116	Open Manhole	1200
F9.000	0	150	FMH 2.12 A	20.600	19.250	1.200	Open Manhole	1200
F8.003	0	150	FMH 2.12	19.400	17.294	1.956	Open Manhole	1200
F8.004	0	150	FMH 2.11	18.500	16.950	1.400	Open Manhole	1200
F10.000	0	225	FMH 2.10 B	19.900	18.475	1.200	Open Manhole	1200
F10.001	0	225	FMH 2.10 A	19.000	17.523	1.252	Open Manhole	1200

Downstream Manhole

PN	Length (m)	Slope (1:X)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
F8.002	64.000	100.0	FMH 2.12	19.400	17.294	1.956	Open Manhole	1200
F9.000	60.600	50.0	FMH 2.12	19.400	18.038	1.212	Open Manhole	1200
	34.400 23.600		FMH 2.11 FMH 2.10				Open Manhole Open Manhole	
			FMH 2.10 A FMH 2.10				Open Manhole Open Manhole	
			©198	32-2017	XP Sol	utions		

TOBIN Consulting Engineers		Page 20	
Fairgreen House	Rosshill SHD		
Fairgreen Road		4	
Galway		Micco	
Date 05/12/2019 17:43	Designed by Richard Daly	Designation	
File FOUL DRAINAGE WITH ADDITIONAL CAPACITY FO	Checked by Brendan Heaney	Drainage	
Micro Drainage	Network 2017.1.2		

Upstream Manhole

PN	Hyd Sect	Diam (mm)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
F8.005	0	225	FMH 2.10	17.900	16.421	1.254	Open Manhole	1200
F8.006	0	225	FMH 2.9	17.850	16.200	1.425	Open Manhole	1200
F8.007	0	225	FMH 2.8	16.250	14.250	1.775	Open Manhole	1200
F8.008	0	225	FMH 2.7	15.400	13.963	1.212	Open Manhole	1200
F11.000	0	225	FMH 2.6 A	15.600	13.975	1.400	Open Manhole	1200
F8.009	0	225	FMH 2.6	14.900	13.400	1.275	Open Manhole	1200

Downstream Manhole

PN	Length (m)	Slope (1:X)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
F8.005	8.500	65.0	FMH 2.9	17.850	16.290	1.335	Open Manhole	1200
F8.006	43.900	30.0	FMH 2.8	16.250			Open Manhole	
F8.007	8.600	30.0	FMH 2.7	15.400	13.963		Open Manhole	
F8.008	31.400	55.8	FMH 2.6	14.900	13.400	1.275	Open Manhole	1200
F11.000	27.700	55.0	FMH 2.6	14.900	13.471	1.204	Open Manhole	1200
F8.009	21.900	25.0	FMH 2.5	13.950	12.524	1.201	Open Manhole	1200
			©1	982-201	7 XP Sc	lutions	3	

TOBIN Consulting Engineers		Page 21
Fairgreen House	Rosshill SHD	
Fairgreen Road		4
Galway		Micro
Date 05/12/2019 17:43	Designed by Richard Daly	
File FOUL DRAINAGE WITH ADDITIONAL CAPACITY FO	Checked by Brendan Heaney	Drainage
Micro Drainage	Network 2017.1.2	

Upstream Manhole

PN	Hyd Sect	Diam (mm)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
F8.010	0	225	FMH 2.5	13.950	12.324	1.401	Open Manhole	1200
F12.000 F12.001	0		FMH 2.4 B FMH 2.4 A	11.000 10.550	9.850 9.031		Open Manhole Open Manhole	1200 1200
F8.011 F8.012	0	225 225	FMH 2.4 FMH 2.3	10.600 10.450	8.732 8.529		Open Manhole Open Manhole	1200 1200
F13.000	0	150	FMH 2.2 B	10.250	8.900	1.200	Open Manhole	1200

Downstream Manhole

PN	Length (m)	Slope (1:X)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH	DIAM., L*W (mm)
F8.010	79.800	25.0	FMH 2.4	10.600	9.132	1.243	Open Manhole		1200
F12.000 F12.001			FMH 2.4 A FMH 2.4		9.031 8.807		Open Manhole Open Manhole		1200 1200
	30.430 23.900		FMH 2.3 FMH 2.2	10.450 10.000	8.529 8.370		Open Manhole Open Manhole		1200 1200
F13.000	39.600	60.0	FMH 2.2 A	9.850	8.240	1.460	Open Manhole		1200

TOBIN Consulting Engineers		Page 22
Fairgreen House	Rosshill SHD	
Fairgreen Road		4
Galway		Micco
Date 05/12/2019 17:43	Designed by Richard Daly	Designado
File FOUL DRAINAGE WITH ADDITIONAL CAPACITY FO	Checked by Brendan Heaney	Drainage
Micro Drainage	Network 2017.1.2	

Upstream Manhole

PN	Hyd Sect	Diam (mm)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
F13.001	0	150	FMH 2.2 A	9.850	8.240	1.460	Open Manhole	1200
F8.013	0	225	FMH 2.2	10.000	7.933	1.843	Open Manhole	1200
F14.000 F14.001	0		FMH 2.1 B FMH 2.1 A	9.400 9.100	8.250 7.315		Open Manhole Open Manhole	1200 1200
F8.014	0	225	FMH 2.1	9.000	7.148	1.627	Open Manhole	1200

Downstream Manhole

PN	Length (m)	Slope (1:X)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L* (mm)
F13.001	27.900	120.0	FMH 2.2	10.000	8.008	1.843	Open Manhole	120
F8.013	55.200	150.0	FMH 2.1	9.000	7.565	1.211	Open Manhole	120
F14.000 F14.001			FMH 2.1 A FMH 2.1	9.100 9.000	7.315 7.223		Open Manhole Open Manhole	120 120
F8.014	9.100	100.0	FMH 2.0	9.000	7.057	1.718	Open Manhole	120

TOBIN Consulting Engineers	Page 23	
Fairgreen House	Rosshill SHD	
Fairgreen Road		4
Galway		Micro
Date 05/12/2019 17:43	Designed by Richard Daly	
File FOUL DRAINAGE WITH ADDITIONAL CAPACITY FO	Checked by Brendan Heaney	Drainage
Micro Drainage	Network 2017.1.2	

Upstream Manhole

PN Hyd Diam MH C.Level I.Level D.Depth MH MH DIAM., L*W Sect (mm) Name (m) (m) Connection (mm)

F1.019 o 300 FMH 2.0 9.000 6.982 1.718 Open Manhole 1200

Downstream Manhole

PN Length Slope MH C.Level I.Level D.Depth MH MH DIAM., L*W (m) (1:X) Name (m) (m) (m) Connection (mm)

F1.019 11.500 267.4 FMH 1 0.000 6.939 Open Manhole 0

APPENDIX C

Soakaway Design Calculations

Soakaway Design to BRE 365

Design Procedure I - O = S where:

I = Inflow from impermeable area to be drained

O = Outflow infiltrating into the soil during rainfall

S = Storage required

 $I = A \times R$ where;

A = the impermeable area drained to the soakaway;

R = the total rainfall in a 100 yrdesign storm

where;

 $\mathbf{a}_{\mathrm{s}50}$ = the internal surface area of the soakaway to 50% effective depth

f = the soil infiltration rate determined in trial pit at the site of the proposed soakaway

D = the storm Duration

Soakaway No. 1

Drained Area = **521.514** m2

Proposed Soakaway

Length (m) Width (m) Depth (m)

3 4 1.2

 a_{s50} 8.4 m^2

Void Ratio 40 %

Infiltration Rate (f) 2.5514E-04 m/s

For a 100 Year return period from table below

Duration Minutes	M100 - D (mm)	I (m³)	O (m ³)	S (m ³)	S required @ 40% voids	Check
10.00	10.4	5.966	1.286	5	12	OK
15.00	12.2	6.999	1.929	5	13	OK
30.00	15.8	9.064	3.858	5	13	OK
60.00	20.5	11.760	7.715	4	10	OK
120.00	26.6	15.259	15.431	0	0	OK
360.00	40.2	23.061	46.293	-23	-58	OK
720.00	52.1	29.888	92.585	-63	-157	OK
1440.00	67.6	38.780	185.170	-146	-366	OK

Soakaway Design to BRE 365

Design Procedure I - O = S where;

 $I = A \times R$ where; TOBIN

I = *Inflow from impermeable area to be drained*

We area to be drained A =the impermeable area drained to the soakaway;

O = Outflow infiltrating into the soil during rainfall

R = the total rainfall in a 100 yrdesign storm

S = Storage required

 $O = a_{s50} x f x D$

where;

 $\mathbf{a}_{\mathrm{s}50}$ = the internal surface area of the soakaway to 50% effective depth

f = the soil infiltration rate determined in trial pit at the site of the proposed soakaway

D = the storm Duration

Soakaway No. 2

Drained Area = 2439.855 m2

Proposed Soakaway

Length (m) Width (m) Depth (m) 13 6 1.2

 a_{s50} 22.8 m^2

Void Ratio 40 %

Infiltration Rate (f) 2.5514E-04 m/s

For a 100 Year return period from table below

Duration Minutes	M100 - D (mm)	I (m³)	O (m ³)	S (m ³)	S required @ 40% voids	Check
10.00	10.4	27.912	3.490	24	61	OK
15.00	12.2	32.743	5.235	28	69	OK
30.00	15.8	42.405	10.471	32	80	OK
60.00	20.5	55.019	20.942	34	85	OK
120.00	26.6	71.390	41.884	30	74	OK
360.00	40.2	107.890	125.651	-18	-44	OK
720.00	52.1	139.828	251.303	-111	-279	OK
1440.00	67.6	181.428	502.605	-321	-803	OK

Soakaway Design to BRE 365

I = Inflow from impermeable area to be drained

O = Outflow infiltrating into the soil during rainfall

Design Procedure I - O = S

where;

 $I = A \times R$ where;

A = the impermeable area drained to the soakaway;

R = the total rainfall in a 100 yrdesign storm

S = Storage required

 $O = a_{s50} x f x D$

where;

 \mathbf{a}_{s50} = the internal surface area of the soakaway to 50% effective depth

f = the soil infiltration rate determined in trial pit at the site of the proposed soakaway

D = the storm Duration

Soakaway No. 3

Drained Area = **6521.337** m2

Proposed Soakaway

Length (m) Width (m) Depth (m) 29 8 1.2

 a_{s50} 44.4 m^2

Void Ratio 40 %

Infiltration Rate (f) 2.5514E-04 m/s

For a 100 Year return period from table below

Duration Minutes	M100 - D (mm)	I (m³)	O (m ³)	S (m ³)	S required @ 40% voids	Check
10.00	10.4	74.604	6.797	68	170	OK
15.00	12.2	87.516	10.195	77	193	OK
30.00	15.8	113.341	20.391	93	232	OK
60.00	20.5	147.056	40.782	106	266	OK
120.00	26.6	190.814	81.563	109	273	OK
360.00	40.2	288.374	244.689	44	109	OK
720.00	52.1	373.738	489.379	-116	-289	OK
1440.00	67.6	484.927	978.758	-494	-1235	OK

Soakaway Design to BRE 365

Design Procedure I - O = S where:

I = Inflow from impermeable area to be drained

O = Outflow infiltrating into the soil during rainfall

S = Storage required

 $I = A \times R$ where:

A = the impermeable area drained to the soakaway;

R = the total rainfall in a 100 yrdesign storm

 $O = a_{s50} x f x D$

where;

 \mathbf{a}_{s50} = the internal surface area of the soakaway to 50% effective depth

f = the soil infiltration rate determined in trial pit at the site of the proposed soakaway

D = the storm Duration

Soakaway No. 4

Drained Area = 6738.417 m2

Proposed Soakaway

Length (m) Width (m) Depth (m) 36 1.2

 50.4 m^2 a_{s50}

Void Ratio 40 %

Infiltration Rate (f) 2.8371E-04 m/s

For a 100 Year return period from table below

Duration Minutes	M100 - D (mm)	I (m³)	O (m ³)	S (m ³)	S required @ 40% voids	Check
10.00	10.4	77.087	8.579	69	171	OK
15.00	12.2	90.430	12.869	78	194	OK
30.00	15.8	117.114	25.738	91	228	OK
60.00	20.5	151.951	51.476	100	251	OK
120.00	26.6	197.166	102.953	94	236	OK
360.00	40.2	297.973	308.858	-11	-27	OK
720.00	52.1	386.179	617.716	-232	-579	OK
1440.00	67.6	501.069	1235.432	-734	-1836	OK

Soakaway Design to BRE 365

Design Procedure I - O = S where:

I = Inflow from impermeable area to be drained

- Innow from impermeable area to be drained

O = Outflow infiltrating into the soil during rainfall

S = Storage required

 $I = A \times R$ where:

A = the impermeable area drained to the soakaway;

R = the total rainfall in a 100 yrdesign storm

where;

 \mathbf{a}_{s50} = the internal surface area of the soakaway to 50% effective depth

f = the soil infiltration rate determined in trial pit at the site of the proposed soakaway

D = the storm Duration

Soakaway No. 5

Drained Area = 4004.532 m2

Proposed Soakaway

Length (m) Width (m) Depth (m) 15 13 1.2

 a_{s50} 33.6 m^2

Void Ratio 40 %

Infiltration Rate (f) 1.1889E-04 m/s

For a 100 Year return period from table below

Duration Minutes	M100 - D (mm)	I (m³)	O (m ³)	S (m ³)	S required @ 40% voids	Check
10.00	10.4	45.812	2.397	43	109	OK
15.00	12.2	53.741	3.595	50	125	OK
30.00	15.8	69.599	7.190	62	156	OK
60.00	20.5	90.302	14.381	76	190	OK
120.00	26.6	117.173	28.762	88	221	OK
360.00	40.2	177.080	86.286	91	227	OK
720.00	52.1	229.500	172.571	57	142	OK
1440.00	67.6	297.777	345.142	-47	-118	OK

Soakaway Design to BRE 365

Design Procedure I - O = S where:

I = Inflow from impermeable area to be drained

O = Outflow infiltrating into the soil during rainfall

S = Storage required

 $I = A \times R$ where;

A = the impermeable area drained to the soakaway;

R = the total rainfall in a 100 yrdesign storm

where;

 \mathbf{a}_{s50} = the internal surface area of the soakaway to 50% effective depth

f = the soil infiltration rate determined in trial pit at the site of the proposed soakaway

D = the storm Duration

Soakaway No. 6

Drained Area = 6535.935 m2

Proposed Soakaway

Length (m) Width (m) Depth (m) 39 8 1.2

 a_{s50} 56.4 m^2

Void Ratio 40 %

Infiltration Rate (f) 1.1889E-04 m/s

For a 100 Year return period from table below

Duration Minutes	M100 - D (mm)	I (m³)	O (m ³)	S (m ³)	S required @ 40% voids	Check
10.00	10.4	74.771	4.023	71	177	OK
15.00	12.2	87.712	6.035	82	204	OK
30.00	15.8	113.595	12.070	102	254	OK
60.00	20.5	147.385	24.139	123	308	OK
120.00	26.6	191.241	48.279	143	357	OK
360.00	40.2	289.019	144.837	144	360	OK
720.00	52.1	374.574	289.673	85	212	OK
1440.00	67.6	486.012	579.346	-93	-233	OK

Soakaway Design to BRE 365

Design Procedure I - O = S where:

I = Inflow from impermeable area to be drained

O = Outflow infiltrating into the soil during rainfall

S = Storage required

 $I = A \times R$ where:

A = the impermeable area drained to the soakaway;

R = the total rainfall in a 100 yrdesign storm

where;

 \mathbf{a}_{s50} = the internal surface area of the soakaway to 50% effective depth

f = the soil infiltration rate determined in trial pit at the site of the proposed soakaway

D = the storm Duration

Soakaway No. 7

Drained Area = 2688.534 m2

Proposed Soakaway

Length (m) Width (m) Depth (m) 20 6 1.2

 a_{s50} 31.2 m^2

Void Ratio 40 %

Infiltration Rate (f) 9.4330E-05 m/s

For a 100 Year return period from table below

Duration Minutes	M100 - D (mm)	I (m³)	O (m ³)	S (m ³)	S required @ 40% voids	Check
10.00	10.4	30.757	1.766	29	72	OK
15.00	12.2	36.080	2.649	33	84	OK
30.00	15.8	46.727	5.298	41	104	OK
60.00	20.5	60.626	10.595	50	125	OK
120.00	26.6	78.667	21.190	57	144	OK
360.00	40.2	118.887	63.571	55	138	OK
720.00	52.1	154.080	127.142	27	67	OK
1440.00	67.6	199.919	254.283	-54	-136	OK

Soakaway Design to BRE 365

Design Procedure I - O = S where:

I = Inflow from impermeable area to be drained

O = Outflow infiltrating into the soil during rainfall

S = Storage required

 $I = A \times R$ where;

A = the impermeable area drained to the soakaway;

R = the total rainfall in a 100 yrdesign storm

where;

 \mathbf{a}_{s50} = the internal surface area of the soakaway to 50% effective depth

f = the soil infiltration rate determined in trial pit at the site of the proposed soakaway

D = the storm Duration

Soakaway No. 8

Drained Area = 2873.799 m2

Proposed Soakaway

Length (m) Width (m) Depth (m) 29 9 1.2

 a_{s50} 45.6 m^2

Void Ratio 40 %

Infiltration Rate (f) 2.3100E-05 m/s

For a 100 Year return period from table below

Duration Minutes	M100 - D (mm)	I (m³)	O (m ³)	S (m ³)	S required @ 40% voids	Check
10.00	10.4	32.876	0.632	32	81	OK
15.00	12.2	38.566	0.948	38	94	OK
30.00	15.8	49.947	1.896	48	120	OK
60.00	20.5	64.804	3.792	61	153	OK
120.00	26.6	84.087	7.584	77	191	OK
360.00	40.2	127.079	22.753	104	261	OK
720.00	52.1	164.697	45.505	119	298	OK
1440.00	67.6	213.696	91.010	123	307	OK

Soakaway Design to BRE 365

Design Procedure I - O = S

where:

I = Inflow from impermeable area to be drained

O = Outflow infiltrating into the soil during rainfall

S = Storage required

 $I = A \times R$ where:

A = the impermeable area drained to the soakaway;

R = the total rainfall in a 100 yrdesign storm

where;

 \mathbf{a}_{s50} = the internal surface area of the soakaway to 50% effective depth

f = the soil infiltration rate determined in trial pit at the site of the proposed soakaway

D = the storm Duration

Soakaway No. 9

Drained Area = 2318.364 m2

Proposed Soakaway

Length (m) Width (m) Depth (m) 20 11 1.2

 37.2 m^2 a_{s50}

Void Ratio 40 %

Infiltration Rate (f) 2.3100E-05 m/s

For a 100 Year return period from table below

Duration Minutes	M100 - D (mm)	I (m³)	O (m ³)	S (m ³)	S required @ 40% voids	Check
10.00	10.4	26.522	0.516	26	65	OK
15.00	12.2	31.112	0.773	30	76	OK
30.00	15.8	40.293	1.547	39	97	OK
60.00	20.5	52.279	3.094	49	123	OK
120.00	26.6	67.835	6.187	62	154	OK
360.00	40.2	102.518	18.561	84	210	OK
720.00	52.1	132.865	37.123	96	239	OK
1440.00	67.6	172.394	74.245	98	245	OK

Soakaway Design to BRE 365

Design Procedure I - O = S where:

 $I = A \times R$ where; IOBIN

I = *Inflow from impermeable area to be drained*

A =the impermeable area drained to the soakaway;

O = Outflow infiltrating into the soil during rainfall

R = the total rainfall in a 100 yrdesign storm

S = Storage required

 $O = a_{s50} x f x D$

where;

 \mathbf{a}_{s50} = the internal surface area of the soakaway to 50% effective depth

f = the soil infiltration rate determined in trial pit at the site of the proposed soakaway

D = the storm Duration

Soakaway No. 10

Drained Area = 5104.08 m2

Proposed Soakaway

Length (m) Width (m) Depth (m) 33 8 1.2

 a_{s50} 49.2 m^2

Void Ratio 40 %

Infiltration Rate (f) 9.4330E-05 m/s

For a 100 Year return period from table below

Duration Minutes	M100 - D (mm)	I (m³)	O (m ³)	S (m ³)	S required @ 40% voids	Check
10.00	10.4	58.391	2.785	56	139	OK
15.00	12.2	68.497	4.177	64	161	OK
30.00	15.8	88.709	8.354	80	201	OK
60.00	20.5	115.097	16.708	98	246	OK
120.00	26.6	149.345	33.415	116	290	OK
360.00	40.2	225.702	100.246	125	314	OK
720.00	52.1	292.515	200.493	92	230	OK
1440.00	67.6	379.539	400.986	-21	-54	OK

Project No. 10690 Client: Alber Homes Project: Rosshill development

Soakaway Design to BRE 365

Design Procedure I - O = S where:

I = Inflow from impermeable area to be drained

O = Outflow infiltrating into the soil during rainfall

S = Storage required

 $I = A \times R$ where:

A = the impermeable area drained to the soakaway;

R = the total rainfall in a 100 yrdesign storm

where;

 \mathbf{a}_{s50} = the internal surface area of the soakaway to 50% effective depth

f = the soil infiltration rate determined in trial pit at the site of the proposed soakaway

D = the storm Duration

Soakaway No. 11

Drained Area = **8758.551** m2

Proposed Soakaway

Length (m) Width (m) Depth (m) 30 13 1.2

 51.6 m^2 a_{s50}

Void Ratio 40 %

Infiltration Rate (f) 2.0576E-04 m/s

For a 100 Year return period from table below

Duration Minutes	M100 - D (mm)	I (m³)	O (m ³)	S (m ³)	S required @ 40% voids	Check
10.00	10.4	100.198	6.370	94	235	OK
15.00	12.2	117.540	9.555	108	270	OK
30.00	15.8	152.224	19.111	133	333	OK
60.00	20.5	197.505	38.222	159	398	OK
120.00	26.6	256.275	76.444	180	450	OK
360.00	40.2	387.303	229.332	158	395	OK
720.00	52.1	501.953	458.664	43	108	OK
1440.00	67.6	651.286	917.327	-266	-665	OK

Rainfall Data obtained from Met Eireann for Grid co-ords 134241E, 225001N (Irish Grid) with 10% added for climate change Highlighted cell is volume required for critcal storm duration

Project No. 10690 Client: Alber Homes Project: Rosshill development

Soakaway Design to BRE 365

Design Procedure I - O = S

I = Inflow from impermeable area to be drained

O = Outflow infiltrating into the soil during rainfall

where;

 $I = A \times R$ where;

A =the impermeable area drained to the soakaway;

R = the total rainfall in a 100 yrdesign storm

S = Storage required

 $O = a_{s50} x f x D$

where;

 \mathbf{a}_{s50} = the internal surface area of the soakaway to 50% effective depth

f = the soil infiltration rate determined in trial pit at the site of the proposed soakaway

D = the storm Duration

Soakaway No. 12

Drained Area = 1451.43 m2

Proposed Soakaway

Length (m) Width (m) Depth (m) 15 4 1.2

 a_{s50} 22.8 m^2

Void Ratio 40 %

Infiltration Rate (f) 9.4330E-05 m/s

For a 100 Year return period from table below

Duration Minutes	M100 - D (mm)	I (m³)	O (m ³)	S (m ³)	S required @ 40% voids	Check
10.00	10.4	16.604	1.290	15	38	OK
15.00	12.2	19.478	1.936	18	44	OK
30.00	15.8	25.226	3.871	21	53	OK
60.00	20.5	32.730	7.743	25	62	OK
120.00	26.6	42.469	15.485	27	67	OK
360.00	40.2	64.182	46.456	18	44	OK
720.00	52.1	83.181	92.911	-10	-24	OK
1440.00	67.6	107.928	185.823	-78	-195	OK

Rainfall Data obtained from Met Eireann for Grid co-ords 134241E, 225001N (Irish Grid) with 10% added for climate chanç Highlighted cell is volume required for critical storm duration

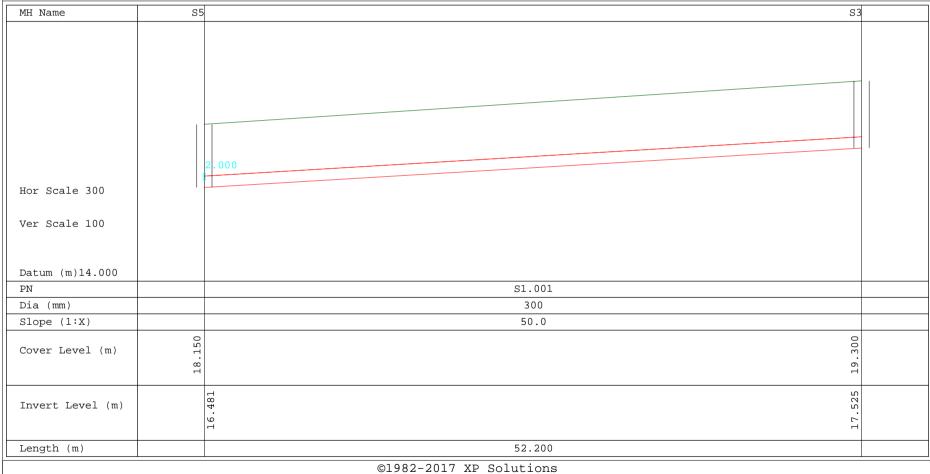
APPENDIX D

Storm Drainage Sections

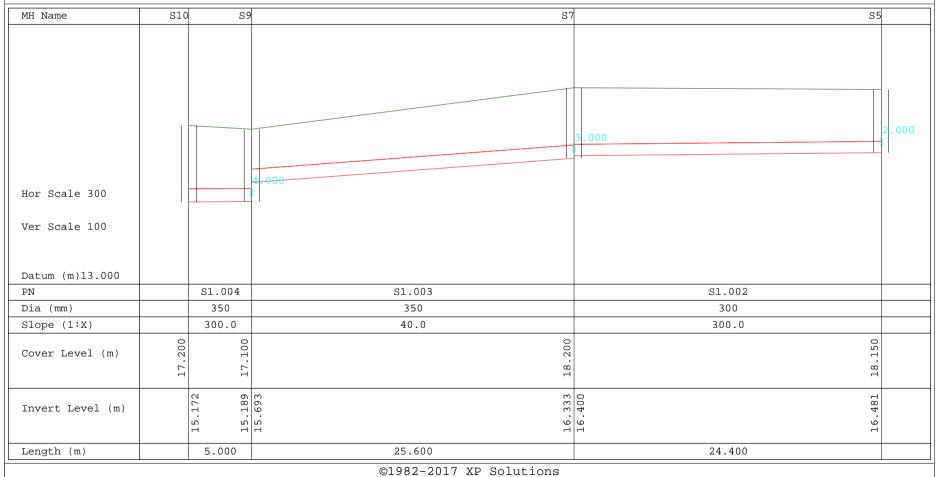
TOBIN Consulting Engineers		Page 1
Fairgreen House		
Fairgreen Road		
Galway		Micro
Date 11/07/2019 10:08	Designed by Fiontan Gallagher	
File STORM DESIGN NETWORK NO	Checked by	Drainage
M' D '	27-1 - 1 2017 1 2	•

Micro Drainage Network 2017.1.2 MH Name S S2 S1 Hor Scale 1500 Ver Scale 200 Datum (m) 1.000 PN S1.001 S1.000 Dia (mm) 225 225 Slope (1:X) 35.0 60.0 14.900 16.450 17.200 Cover Level (m) 15.500 Invert Level (m) 33.127 30.400 Length (m)

TOBIN Consulting Engineer	s		Page 1
Fairgreen House			
Fairgreen Road			
Galway			Micro
Date 05/12/2019 17:47		Designed by Richard Daly	
File STORM DESIGN NETWORK	NO. 2_REV B.MDX	Checked by	Drainage
Micro Drainage		Network 2017.1.2	
MH Name	S2	S	
Hor Scale 200 Ver Scale 100			
Datum (m)13.000 PN		S1.000	
Dia (mm)		225	
Slope (1:X)		60.0	
Cover Level (m)	16.650	17 100	
Invert Level (m)	15.225	7.5.7	
Length (m)		17.500	
	©19	982-2017 XP Solutions	


TOBIN Consulting	Engine	ers						Page 2	
Fairgreen House									
Fairgreen Road								4	
Galway								Micco	,
Date 05/12/2019 1	L7:47						Designed by Richard Daly	Desina	an a
File STORM DESIGN	NETWO	RK N	0.	2_RI	EV B	.MDX	Checked by	Draina	ye
Micro Drainage							Network 2017.1.2		
MH Name	s	7						S2	
						2.000			'
Hor Scale 200									
noi scale 200									
Ver Scale 100									
Ver Scare 100									
Datum (m)12.000									
PN							S1.001		
Dia (mm)							225		
Slope (1:X)							100.0		
	150		2	200	200			650	
Cover Level (m)				. 20	. 20			•	
	16	7	TO	16.	16.			16	
		9 0	n &	Н,	П 4	0		ري ا	
Invert Level (m)		14.746	82	84	8.5	91		225	
		14.	14.828	14.841	14. 14.	14.919		15.	
Longth (m)				\dashv			30.600		
Length (m)							30.000		

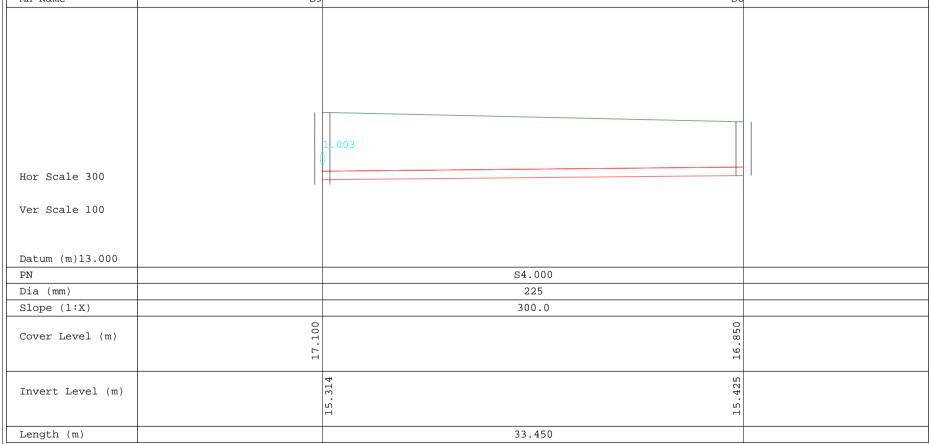
TOBIN Consulting Eng:	ineers					Page 3
Fairgreen House						
Fairgreen Road						4
Galway						Micco
Date 05/12/2019 17:47	7	Designed by Ri	.cha:	rd Da	aly	- Micro Drainage
File STORM DESIGN NET	TWORK NO. 2_REV B.MDX	Checked by				Diamage
Micro Drainage		Network 2017.1	. 2			-
MH Name		S				
				\perp		
				_		
Hor Scale 200						
Ver Scale 100						
Datum (m)12.000						
PN						
Dia (mm)						
Slope (1:X)						
Cover Level (m)		16.200	(1 1	16.150		
Invert Level (m)			14.740	14.746		
Length (m)						
	©19	982-2017 XP Sol	utio	ons		


TOBIN Consulting Engineers		Page 4
Fairgreen House		
Fairgreen Road		4
Galway		Micco
Date 05/12/2019 17:47	Designed by Richard Daly	Desipage
File STORM DESIGN NETWORK NO. 2_REV H	.MDX Checked by	Drainage
Micro Drainage	Network 2017.1.2	
MH Name S4		
	001	
	001 = =	I
'		
Hor Scale 200		
W G1- 100		
Ver Scale 100		
Datum (m)12.000		
PN PN	S2.000	
Dia (mm)	225	
Slope (1:X)	80.0	
0	300	
Cover Level (m)	36.	
16.	16.	
	വ	
Invert Level (m)	15.175	
	1. 5.	
Length (m)	25.700	

TOBIN Consulting Engineers			Page 1
Fairgreen House			
Fairgreen Road			4
Galway			Micco
Date 05/12/2019 17:50		Designed by Richard Daly	MICCO
File Storm Design Network no. 3_R	ev B.mdx	Checked by	Drainage
Micro Drainage		Network 2017.1.2	
MH Name	3	S	1
Hor Scale 300 Ver Scale 100			
Datum (m)16.000			
PN		S1.000	
Dia (mm)		225	
Slope (1:X)		35.0	
Cover Level (m)		0.0 0.7 0.7	
Invert Level (m)	17.714	C C C C C C C C C C C C C C C C C C C	5
Length (m)		41.500	
	©1	982-2017 XP Solutions	

TOBIN Consulting Engineers		Page 2
Fairgreen House		
Fairgreen Road		4
Galway		Micco
Date 05/12/2019 17:50	Designed by Richard Daly	Desipage
File Storm Design Network no. 3_Rev B.mdx	Checked by	Diamage
Micro Drainage	Network 2017.1.2	

TOBIN Consulting Engineers		Page 3
Fairgreen House		
Fairgreen Road		4
Galway		Micro
Date 05/12/2019 17:50	Designed by Richard Daly	Desipage
File Storm Design Network no. 3_Rev B.mdx	Checked by	Diamage
Micro Drainage	Network 2017.1.2	•


TOBIN Consulting Engineers		Page 4
Fairgreen House		
Fairgreen Road		
Galway		Micro
Date 05/12/2019 17:50	Designed by Richard Daly	Desipage
File Storm Design Network no. 3_Rev B.mdx	Checked by	Diamage
Micro Drainage	Network 2017.1.2	

MH Name	s	S10	
Hor Scale 300			
Ver Scale 100			
Datum (m)13.000			
PN		S1.005	
Dia (mm)		350	
Slope (1:X)		197.0	
Cover Level (m)	17.000	17.200	
Invert Level (m)		15.172	
Length (m)		6.500	

TOBIN Consulting Engineers		Page 5
Fairgreen House		
Fairgreen Road		
Galway		Micro
Date 05/12/2019 17:50	Designed by Richard Daly	
File Storm Design Network no. 3_Rev B.mdx	Checked by	Drainage
Micro Drainage	Network 2017.1.2	·
MH Name S5	S4	
Hor Scale 300 Ver Scale 100	1.001	
Datum (m)14.000		
PN	S2.000	
Dia (mm)	225	
Slope (1:X)	200.0	
Cover Level (m)	18.200	
Invert Level (m)	16.655	
Length (m)	24.000	
	91982-2017 XP Solutions	

TOBIN Consulting Engineers		Page 6
Fairgreen House		
Fairgreen Road		4
Galway		Misso
Date 05/12/2019 17:50	Designed by Richard Daly	Designation
File Storm Design Network no. 3_Rev B.mdx	Checked by	Drainage
Micro Drainage	Network 2017.1.2	,
MH Name	57 S6	
Hor Scale 300 Ver Scale 100	1.002	
Datum (m)14.000		
PN	S3.000	
Dia (mm)	225	
Slope (1:X)	300.0	
Cover Level (m)	17.950	
Invert Level (m)	16.458	
Length (m)	20.200	
©1:	982-2017 XP Solutions	

TOBIN Consulting Engineers				Page 7
Fairgreen House				
Fairgreen Road				
Galway				Micco
Date 05/12/2019 17:50		Designed by Richard Daly		Drainage
File Storm Design Network no. 3_Re	v B.mdx	Checked by		Diamage
Micro Drainage		Network 2017.1.2		<u>'</u>
MH Name	S9		S8	

TOBIN Consulting Engineers		Page 1
Fairgreen House		
Fairgreen Road		
Galway		Micro
Date 11/07/2019 10:22	Designed by Fiontan Gallagher	Drainage
File STORM DESIGN NETWORK NO	Checked by	niamade
Micro Drainage	Network 2017.1.2	

MH Name S S2 S1 Hor Scale 1500 Ver Scale 200 Datum (m) 1.000 S1.000 PN S1.001 Dia (mm) 300 225 300.0 Slope (1:X) 35.0 17.900 16.150 16.100 Cover Level (m) 16.475 Invert Level (m) 29.900 63.500 Length (m)

TOBIN Consulting Engineers		Page 2
Fairgreen House		
Fairgreen Road		
Galway		Micco
Date 11/07/2019 10:22	Designed by Fiontan Gallagher	Drainage
File STORM DESIGN NETWORK NO	Checked by	Dialiade
		•

Micro Drainage Network 2017.1.2 MH Name S5 S4 S4 S3 Hor Scale 1500 Ver Scale 200 Datum (m) 2.000 S2.002 PN S2.001 S2.000 Dia (mm) 350 300 225 Slope (1:X) 149.8 30.0 35.0 16.150 18.800 16.000 17.250 Cover Level (m) 14.485 15.555 17.175 Invert Level (m) 30.100 30.600 49.100 Length (m)

TOBIN Consulting Engineers		Page 1
Fairgreen House		
Fairgreen Road		
Galway		Micco
Date 11/07/2019 10:23	Designed by Fiontan Gallagher	Drainage
File STORM DESIGN NETWORK NO	Checked by	Dialilacie
Micro Drainage	Network 2017.1.2	

MH Name Hor Scale 1500 Ver Scale 200 Datum (m) 4.000 PN S1.000 Dia (mm) 225 Slope (1:X) 40.0 19.250 20.800 Cover Level (m) 17.525 16.645 19.375 Invert Level (m) 74.000 Length (m)

TOBIN Consulting Engineers		Page 2
Fairgreen House		
Fairgreen Road		
Galway		Micro
Date 11/07/2019 10:23	Designed by Fiontan Gallagher	
File STORM DESIGN NETWORK NO	Checked by	Drainage
Micro Drainage	Network 2017.1.2	

MH Name	\$3	S2	
		п	
		.000	
Harr Garala 1500			
Hor Scale 1500			
War Caala 200			
Ver Scale 200			
Datum (m) 4.000			
		S2.000	
PN Dia (mm)		225	
Slope (1:X)		90.0	
21000 (1.11)	0		
Cover Level (m)	25(500	
	19.250	19.500	
Invest Level (r)	17.822	18.075	
Invert Level (m)	8.	. 0	
	H	· ~ ~	
Length (m)		22.800	

TOBIN Consulting Engineers		Page 3
Fairgreen House		
Fairgreen Road		4
Galway		Micro
Date 11/07/2019 10:23	Designed by Fiontan Gallagher	Drainage
File STORM DESIGN NETWORK NO	Checked by	nanaye
Micro Drainage	Network 2017.1.2	

MH Name	S5	S4	
		1.001	
Hor Scale 1500			
THOT SCATE 1900			
Vor Saalo 200			
Ver Scale 200			
Do tum (m) 2 000			
Datum (m) 3.000		62.000	
PN Dia (mm)		S3.000	
Dia (mm)		225	
Slope (1:X)		300.0	
Cover Level (m)	18.550	18.250	
	· ®	8	
	\vdash	Ä	
		0 5	
Invert Level (m)		16.825	
		16.825	
T + 12 ()			
Length (m)		31.500	

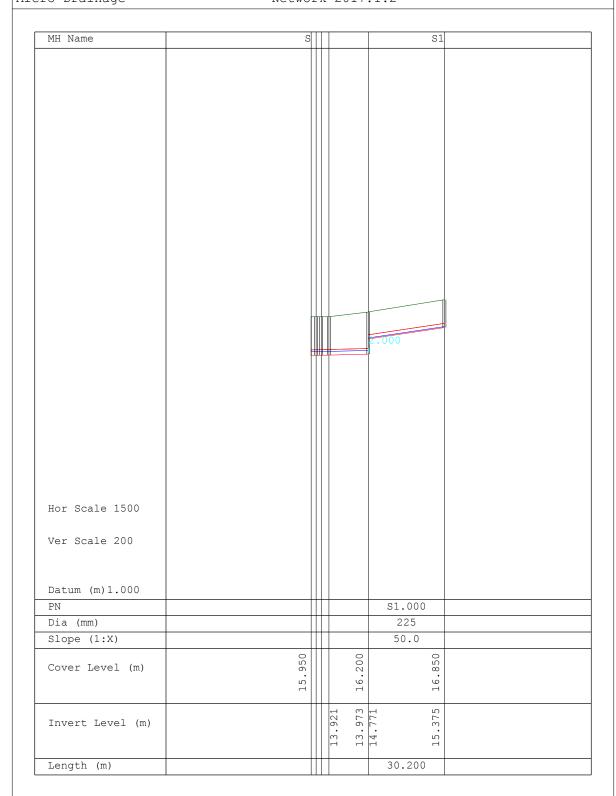
TOBIN Consulting Engineers		Page 1
Fairgreen House		
Fairgreen Road		4
Galway		Micro
Date 11/07/2019 10:24	Designed by Fiontan Gallagher	Drainage
File STORM DESIGN NETWORK NO	Checked by	Dialilade
Micro Drainage	Network 2017 1 2	

Micro Drainage Network 2017.1.2

MH Name	S	s3	S1	
MH Name	S	5.002	2.002	
Hor Scale 1500 Ver Scale 200				
Datum (m) 4.000				
PN		S1.001	S1.000	
Dia (mm)		300	300	
Slope (1:X)		35.0	45.0	
Cover Level (m)	18.600	19.450	20.550	
Invert Level (m)		17.102	17.971	
Length (m)		27.050	İ	

TOBIN Consulting Engineers		Page 2
Fairgreen House		
Fairgreen Road		
Galway		Micco
Date 11/07/2019 10:24	Designed by Fiontan Gallagher	Drainage
File STORM DESIGN NETWORK NO	Checked by	Dialilade
Micro Drainage	Network 2017.1.2	•

MH Name	S3			
		1.0	0	
Hor Scale 1500				
Ver Scale 200				
D / / / / 000				
Datum (m) 4.000				
PN Pi - (mm)				
Dia (mm)				
Slope (1:X)				
Cover Level (m)	19.450	.9.450	9.500	
- ,		6	_; o	
		П	\leftarrow	
		0.8	08	
Towns To 3 ()		_	0	I.
Invert Level (m)		~ ·	· ·	
Invert Level (m)		18.008	18.008	


TOBIN Consulting Engineers		
Fairgreen House		
Fairgreen Road		
Galway		Micco
Date 11/07/2019 10:24	Designed by Fiontan Gallagher	Drainage
File STORM DESIGN NETWORK NO	Checked by	Dialilade
Micro Drainage	Network 2017.1.2	

MH Name S8 S6 S5 Hor Scale 1500 Ver Scale 200 Datum (m) 4.000 PN S3.002 S3.001 S3.000 Dia (mm) 350 300 225 Slope (1:X) 150.3 35.0 40.0 18,000 18,600 19,000 20.000 Cover Level (m) 17.300 16.494 18.400 Invert Level (m) 26.450 26.450 33.600 Length (m)

TOBIN Consulting Engineers		Page 1
Fairgreen House		
Fairgreen Road		
Galway		Micco
Date 11/07/2019 10:24	Designed by Fiontan Gallagher	Desipago
File STORM DESIGN NETWORK NO	Checked by	Drainage
Mi Desire	National 2017 1 2	•

Micro Drainage Network 2017.1.2 MH Name S S2 S1 Hor Scale 1500 Ver Scale 200 Datum (m) 1.000 PN S1.001 S1.000 Dia (mm) 225 225 Slope (1:X) 35.0 35.0 14.700 16.300 18.000 Cover Level (m) 14.325 16.300 Invert Level (m) 37.100 50.500 Length (m)

TOBIN Consulting Engineers		Page 1
Fairgreen House		
Fairgreen Road		4
Galway		Micro
Date 11/07/2019 10:25	Designed by Fiontan Gallagher	Drainage
File STORM DESIGN NETWORK NO	Checked by	nanaye
Micro Drainage	Network 2017.1.2	

TOBIN Consulting Engineers		Page 2
Fairgreen House		
Fairgreen Road		
Galway		Micro
Date 11/07/2019 10:25	Designed by Fiontan Gallagher	Drainage
File STORM DESIGN NETWORK NO	Checked by	niamade
Micro Drainage	Network 2017.1.2	

MH Name	S3	S S2	
		1.000	
Hor Scale 1500			
50410 1500			
77 01- 000			
Ver Scale 200			
Datum (m) 1.000			
PN		S2.000	
Dia (mm)		225	
Slope (1:X)		300.0	
Cover Level (m)	16.200	15.550	
		ر 1	
		Ä	
		ω ω	
Invert Level (m)		12	
		14.048	
Length (m)		23.200	

TOBIN Consulting Engineers		Page 1
Fairgreen House		
Fairgreen Road		
Galway		Micro
Date 11/07/2019 10:25	Designed by Fiontan Gallagher	
File STORM DESIGN NETWORK NO	Checked by	Drainage
Micro Drainage	Network 2017.1.2	

MH Name 2.000 Hor Scale 1500 Ver Scale 200 Datum (m) 0.000 PN 1.003 1.002 Dia (mm) 225 225 Slope (1:X) 35.0 44.4 16.350 Cover Level (m) 13.000 12.379 Invert Level (m) 19.100 30.000 Length (m)

TOBIN Consulting Engineers		Page 2
Fairgreen House		
Fairgreen Road		٧
Galway		Micro
Date 11/07/2019 10:25	Designed by Fiontan Gallagher	Drainage
File STORM DESIGN NETWORK NO	Checked by	namaye
Micro Drainage	Network 2017.1.2	

MH Name	5	4	
		1_002	
Hor Scale 1500			
1101 00010 1000			
Ver Scale 200			
.01 00010 200			
Datum (m) 0.000			
PN		2.000	
Dia (mm)		225	<u> </u>
Slope (1:X)		35.0	
	0		
Cover Level (m)	06.	. 60	
	14.900	15.600	
Invert Level (m)		13.452	
. ,		13.	
Length (m)		25.300	

OBIN Consulting En	gineers			Page 1
airgreen House				
airgreen Road				
alway				Micro
ate 11/07/2019 10:			iontan Gallagh	er Micro Drainago
ile STORM DESIGN N	ETWORK NO	_		Dialilad
Micro Drainage		Network 2017.	1.2	
MH Name	8	4	3	2 1

Hor Scale 1500						
Ver Scale 200						
Datum (m)-5.000						
PN		1.003	1.002	1.001	1.000	
Dia (mm)		300	300	225	225	
Slope (1:X)		95.0	65.7	35.0	35.0	
Cover Level (m)	9.000	0.500	10.200	11.100	12.350	
Invert Level (m)		7.489 7.937	8.637	. 2	9.675	
Length (m)		42.600	46.000	19.700	21.600	

TOBIN Consulting Engineers			Page 2
Fairgreen House			
Fairgreen Road			
Galway			Micco
Date 11/07/2019 10:25	Designed by Fig	ontan Gallagher	Micro
File STORM DESIGN NETWORK NO	Checked by		Drainage
Micro Drainage	Network 2017.1	.2	
MH Name			
riii Name			
	=		
Hor Scale 1500			
Van 02212 200			
Ver Scale 200			
Datum (m)-6.000			
PN			
Dia (mm)			
Slope (1:X)			
	0		
Cover Level (m)	000		
	φ. -•		
Invert Level (m)			
Length (m)			

TOBIN Consulting Engineers		Page 3
Fairgreen House		
Fairgreen Road		
Galway		Micro
Date 11/07/2019 10:25	Designed by Fiontan Gallagher	
File STORM DESIGN NETWORK NO	Checked by	Drainage
Micro Drainage	Network 2017.1.2	

MH Name 6 Hor Scale 1500 Ver Scale 200 Datum (m)-6.0002.001 PN 2.000 Dia (mm) 225 225 Slope (1:X) 199.0 70.0 9.750 Cover Level (m) 7.675 Invert Level (m) 19.900 43.700 Length (m)

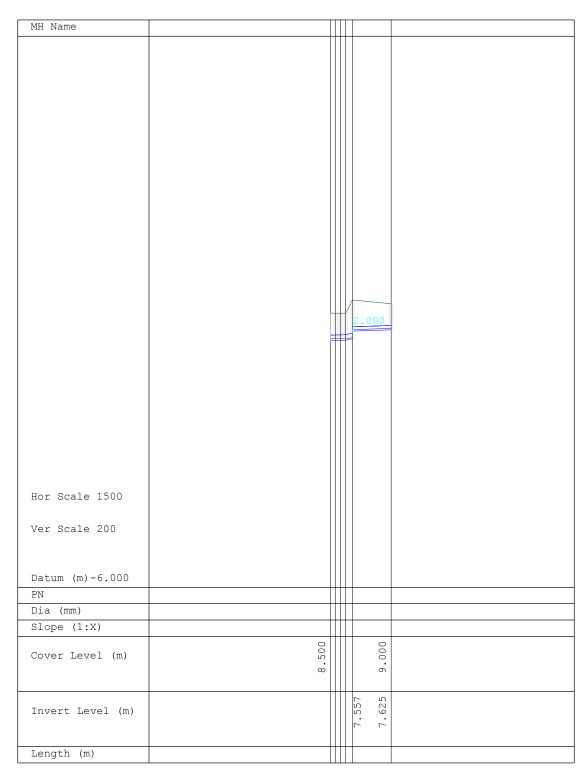
TOBIN Consulting Engineers		Page 1
Fairgreen House		
Fairgreen Road		
Galway		Micro
Date 11/07/2019 10:26	Designed by Fiontan Gallagher	Drainage
File STORM DESIGN NETWORK NO	Checked by	niamade
Micro Drainage	Network 2017.1.2	

Network 2017.1.2 MH Name 4 Hor Scale 1500 Ver Scale 200 Datum (m) - 4.0001.001 PN 1.002 1.000 350 Dia (mm) 350 225 Slope (1:X) 40.0 200.0 30.0 10.000 9.900 13.330 10.500 10.600 Cover Level (m) 9.048 8.915 8.270 Invert Level (m) 24.800 26.600 68.000 Length (m)

TOBIN Consulting Engineers			Page 2
Fairgreen House			
Fairgreen Road			
Galway			Micco
Date 11/07/2019 10:26	Designed by F	iontan Gallagher	Micro Drainage
File STORM DESIGN NETWORK NO	Checked by		namaye
Micro Drainage	Network 2017.	1.2	
MH Name			
		3.001	
Hor Scale 1500			
Ver Scale 200			
Datum (m) 6 000			
Datum (m)-6.000 PN			
Dia (mm)			
Slope (1:X)			
	0	0	
Cover Level (m)	10.000	0000.	
	10	10	
		m	
Invert Level (m)		.163	
		ω ω	
Length (m)			
Tellâcii (III)			

TOBIN Consulting Engineers		Page 3
Fairgreen House		
Fairgreen Road		
Galway		Micco
Date 11/07/2019 10:26	Designed by Fiontan Gallagher	Desipago
File STORM DESIGN NETWORK NO	Checked by	Drainage
Micro Drainage	Network 2017.1.2	

MH Name	3		2
		2 000	
		1.000	
Hor Scale 1500			
HOT SCATE 1500			
W 01- 200			
Ver Scale 200			
Datum (m)-5.000		0.000	
PN		2.000	
Dia (mm)		300	
Slope (1:X)		135.0	
Cover Level (m)	10.600		11.100
SOUTH DOVER (III)	9.		` .
	Ä		\vdash
		<u>ი</u>	Ω
Invert Level (m)		9.159	9.675
		0	0
T (1)		60.600	
Length (m)		69.600	


TOBIN Consulting Engineers		Page 4
Fairgreen House		
Fairgreen Road		
Galway		Micco
Date 11/07/2019 10:26	Designed by Fiontan Gallagher	Desipago
File STORM DESIGN NETWORK NO	Checked by	Drainage
Micro Drainage	Network 2017.1.2	

MH Name	9		6	
		1 00	§. 000	
		1.00	3.000	
Hor Scale 1500				
Ver Scale 200				
Datum (m)-5.000				
PN			3.000	
Dia (mm)			225	
Slope (1:X)			290.0	
Cover Level (m)	10.000	10.000	10.000	
,	0.0	0.0		
	Τ	\vdash		
		7.8	53	
Invert Level (m)		8.378	8.453	
		ω	۳	

TOBIN Consulting Engineers		Page 5
Fairgreen House		
Fairgreen Road		
Galway		Micco
Date 11/07/2019 10:26	Designed by Fiontan Gallagher	Desipago
File STORM DESIGN NETWORK NO	Checked by	Drainage
Micro Drainage	Network 2017.1.2	

MH Name	8	7	
		3.000	
Hor Scale 1500			
Ver Scale 200			
Da+11m (m) E 000			
Datum (m)-5.000		4 000	
PN		4.000	
Dia (mm)		300 100.0	
Slope (1:X)			
Cover Level (m)	10.000	10.300	
	0.	0	
	H		
		50	
Invert Level (m)		8.450	
		ω ∞	
Length (m)		42.500	

TOBIN Consulting Engineers		Page 1
Fairgreen House		
Fairgreen Road		
Galway		Micco
Date 11/07/2019 10:26	Designed by Fiontan Gallagher	Desipago
File STORM DESIGN NETWORK NO	Checked by	Drainage
Micro Drainage	Network 2017.1.2	

TOBIN Consulting Engineers		Page 2
Fairgreen House		
Fairgreen Road		
Galway		Micco
Date 11/07/2019 10:26	Designed by Fiontan Gallagher	Desipago
File STORM DESIGN NETWORK NO	Checked by	Drainage
Micro Drainage	Network 2017.1.2	

MH Name	3	2	
		1 000	
		1.000	
Hor Scale 1500			
nor board 1000			
Ver Scale 200			
.01 00010 200			
Datum (m)-6.000			
PN		2.000	
Dia (mm)		225	
Slope (1:X)		225.0	
<u> </u>	0		<u> </u>
Cover Level (m)	9,200	9.050	
	ģ	9	
Invert Level (m)		7.453	
		7.	
Length (m)		27.400	

APPENDIX E

Foul Drainage Sections

TOBIN Consulting Engineers		Page 1
Fairgreen House		
Fairgreen Road		
Galway		Micco
Date 11/07/2019 10:07	Designed by Fiontan Gallagher	Drainage
File FOUL DRAINAGE WITH ADDI	Checked by	Diamage
_ '		

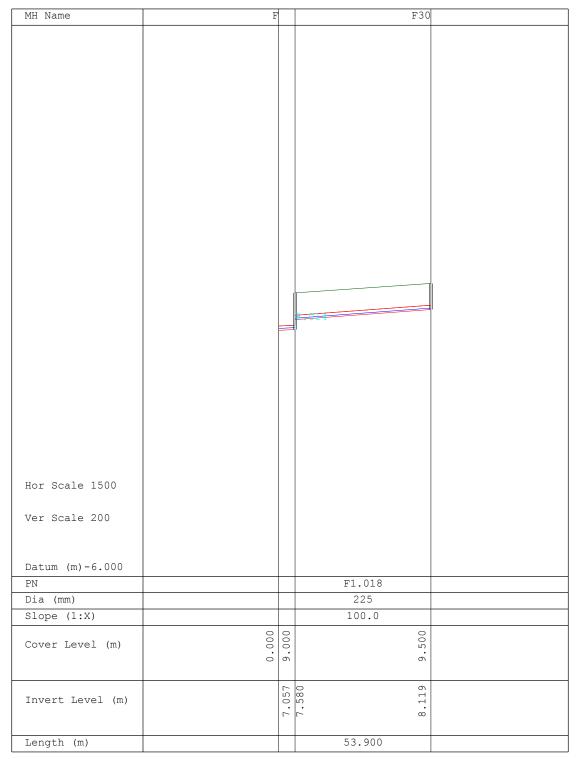
Micro Drainage Network 2017.1.2 MH Name F5 F3 F2 F1 Hor Scale 1500 Ver Scale 200 Datum (m) 4.000 F1.000 PN F1.002 F1.001 Dia (mm) 150 150 150 120.0 Slope (1:X) 40.0 35.0 18.250 18.150 19.450 20.500 Cover Level (m) 16.880 18.187 19.150 Invert Level (m) 38.120 52.300 33.700 Length (m)

TOBIN Consulting Engineers		Page 2
Fairgreen House		
Fairgreen Road		
Galway		Micro
Date 11/07/2019 10:07	Designed by Fiontan Gallagher	
File FOUL DRAINAGE WITH ADDI	Checked by	Drainage

Micro Drainage Network 2017.1.2 MH Name F12 F11 F6 F5 Hor Scale 1500 Ver Scale 200 Datum (m) 2.000 PN F1.005 F1.004 F1.003 Dia (mm) 150 150 150 100.0 Slope (1:X) 130.0 45.0 18.250 16.100 16.850 Cover Level (m) 15.495 16.562 Invert Level (m) 24.700 30.400 48.000 Length (m)

TOBIN Consulting Engineers		Page 3
Fairgreen House		
Fairgreen Road		4
Galway		Micco
Date 11/07/2019 10:07	Designed by Fiontan Gallagher	Desinado
File FOUL DRAINAGE WITH ADDI	Checked by	Drainage
Miaro Drainago	Notronk 2017 1 2	

Micro Drainage Network 2017.1.2 MH Name F18 F17 F12 Hor Scale 1500 Ver Scale 200 Datum (m) 0.000 PN F1.009 F1.006 Dia (mm) 225 150 Slope (1:X) 130.0 130.0 15.750 14.900 16.100 16.000 Cover Level (m) 13.865 13.865 13.949 13.690 14.246 Invert Level (m) 39.400 38.600 Length (m)


TOBIN Consulting Engineers		Page 4
Fairgreen House		
Fairgreen Road		4
Galway		Micro
Date 11/07/2019 10:07	Designed by Fiontan Gallagher	Drainage
File FOUL DRAINAGE WITH ADDI	Checked by	Dialilada
Micro Drainago	Notronk 2017 1 2	

Micro Drainage Network 2017.1.2 MH Name F23 F21 F20 F18 .000 .000 Hor Scale 1500 Ver Scale 200 Datum (m) 0.000 PN F1.012 F1.011 F1.010 Dia (mm) 225 225 225 Slope (1:X) 200.0 200.0 200.0 15.800 15,000 15.900 Cover Level (m) 13.223 13.387 Invert Level (m) 31.870 37.400 32.800 Length (m)

TOBIN Consulting Engineers		Page 5
Fairgreen House		
Fairgreen Road		
Galway		Micco
Date 11/07/2019 10:07	Designed by Fiontan Gallagher	Desipago
File FOUL DRAINAGE WITH ADDI	Checked by	Drainage

Micro Drainage Network 2017.1.2 MH Name F30 F29 F25 F24 F23 Hor Scale 1500 Ver Scale 200 Datum (m)-3.000PN F1.017 F1.015 F1.014 F1.013 Dia (mm) 225 225 225 225 Slope (1:X) 55.0 20.0 20.0 200.0 10.200 15.800 Cover Level (m) 12. 12.670 10.000 8.917 12.877 Invert Level (m) 43.900 19.710 19.530 41.300 Length (m)

TOBIN Consulting Engineers		Page 6
Fairgreen House		
Fairgreen Road		4
Galway		Micco
Date 11/07/2019 10:07	Designed by Fiontan Gallagher	Desipago
File FOUL DRAINAGE WITH ADDI	Checked by	nialilade
Micro Drainage	Network 2017.1.2	1

TOBIN Consulting Engineers		Page 7
Fairgreen House		
Fairgreen Road		
Galway		Micro
Date 11/07/2019 10:07	Designed by Fiontan Gallagher	Drainane
File FOUL DRAINAGE WITH ADDI	Checked by	niali lade
Micro Drainage	Network 2017.1.2	1

	1 0	0	
Hor Scale 1500			
Ver Scale 200			
Datum (m) 3.000			
PN		.000	
Dia (mm)		.50	
Slope (1:X)		0.0	
Cover Level (m)	18.250	. 550	
Cover Level (m)	2	. 5	
	1 13	18	
		0	
Invert Level (m)	16.858	17.200	
	16.	17.	
Length (m)		.510	

TOBIN Consulting Engineers		Page 8
Fairgreen House		
Fairgreen Road		
Galway		Micco
Date 11/07/2019 10:07	Designed by Fiontan Gallagher	Drainage
File FOUL DRAINAGE WITH ADDI	Checked by	Dialilade

Micro Drainage Network 2017.1.2 MH Name F11 F10 F9 F8 F7 .004 Hor Scale 1500 Ver Scale 200 Datum (m) 1.000 PN F3.003 F3.002 F3.001 F3.000 Dia (mm) 150 150 150 150 Slope (1:X) 130.0 130.0 50.0 60.0 16.200 16.300 16.250 17.000 17.500 Cover Level (m) 14.670 14.913 15.527 16.150 Invert Level (m) 30.400 31.600 30.700 37.400 Length (m)

TOBIN Consulting Engineers					
Fairgreen House					
Fairgreen Road					
Galway		Micro			
Date 11/07/2019 10:07	Designed by Fiontan Gallagher	Drainage			
File FOUL DRAINAGE WITH ADDI	Checked by	Diamage			
Micro Drainage	Network 2017.1.2				

MH Name F15 F14 F13 Hor Scale 1500 Ver Scale 200 Datum (m) 2.000 F4.001 PN F4.000 Dia (mm) 150 150 35.0 Slope (1:X) 40.0 16.000 18.800 Cover Level (m) 16.020 17.250 Invert Level (m) 33.600 49.200 Length (m)

TOBIN Consulting Engineers			
Fairgreen House			
Fairgreen Road			
Galway		Micro	
Date 11/07/2019 10:07	Designed by Fiontan Gallagher		
File FOUL DRAINAGE WITH ADDI	Checked by	Drainage	
Micro Drainage	Network 2017.1.2		

MH Name	F20	F19	
rm Name	FZU	119	
	1.01	0	
Hor Scale 1500			
Ver Scale 200			
Datum (m) 1.000			
PN PN		F5.000	
Dia (mm)		150	
Slope (1:X)		30.0	
	00		
Cover Level (m)	15.900	18.000	
	1.5	H	
	m	0	
Invert Level (m)	14.623	16.650	
	14	1 6	
Length (m)		60.800	
nerry err (m)		00.000	

TOBIN Consulting Engineers				
Fairgreen House				
Fairgreen Road		4		
Galway		Micco		
Date 11/07/2019 10:07	Designed by Fiontan Gallagher	Drainage		
File FOUL DRAINAGE WITH ADDI	Checked by	namaye		
Micro Drainage	Network 2017.1.2	1		

MH Name	F23	F22	
			1
		1.012	
		1.012	
Hor Scale 1500			
Ver Scale 200			
Datum (m) 0.000			
PN		F6.000	
Dia (mm)		150 40.0	
Slope (1:X)			
Cover Level (m)	15.800	16.850	
	15.	16.	
Invert Level (m)		14.581	
(,		4 0	
Length (m)		28.770	

TOBIN Consulting Engineers	Page 12	
Fairgreen House		
Fairgreen Road		
Galway		Micro
Date 11/07/2019 10:07	Designed by Fiontan Gallagher	Drainage
File FOUL DRAINAGE WITH ADDI	Checked by	nanaye
Micro Drainage	Network 2017.1.2	

			I	
	01			
	D7 001	B7 000		
200	00	100		
0	1.	2.4		
Ē.				
	2 2	0 0		
	26.	.70		
	ω σ 	10		
		1		
	10.200	150 25.0 00 00 01 11 266 66.	F7.001 F7.000 150 150 25.0 25.0	F7.001 F7.000 150 150 25.0 25.0

TOBIN Consulting Engineers	Page 13	
Fairgreen House		
Fairgreen Road		
Galway		Micro
Date 11/07/2019 10:07	Designed by Fiontan Gallagher	Drainage
File FOUL DRAINAGE WITH ADDI	Checked by	nanaye
Micro Drainage	Network 2017.1.2	

MH Name	F33	F32	F31	
MH Name	F33	F 32	F'31	
	II			
	Ī			
Hor Scale 1500				
Ver Scale 200				
Datum (m) 5.000		-0.22	-0.000	
PN Dia (mm)		F8.001	F8.000	
Dia (mm) Slope (1:X)		150 50.0	150 50.0	
010he (1.v)				
Cover Level (m)	200	100	20.800	
	19.200	20.100	20.	
Invert Level (m)	Š	18.706	18.706	
. ,	<u>r</u>		. 6	
Length (m)		38.600	37.200	

TOBIN Consulting Engineers	Page 14	
Fairgreen House		
Fairgreen Road		
Galway		Micro
Date 11/07/2019 10:07	Designed by Fiontan Gallagher	Drainage
File FOUL DRAINAGE WITH ADDI	Checked by	niamade
Micro Drainage	Network 2017.1.2	

MH Name	F40		F36	F3!	F3:	3
					9.000	
						#
			10.001			
Hor Scale 1500						
Ver Scale 200						
Datum (m) 3.000						
PN			E8 004	F8.003	F8 002	+
Dia (mm)		\dashv	F8.004	150	F8.002	1
Slope (1:X)			51.9	100.0	100.0	
<u> </u>	0	0				1
Cover Level (m)	17.850	17.900	18.500	19.400	19.200	
	17.	17.	18	9 .	91	
Invert Level (m)		16.421	16.496	950	7. 29 4 6	
(/		9	9 9	6.	7.	
		7		H H		
Length (m)			23.600	34.400	64.000	1

TOBIN Consulting Engineers					
Fairgreen House					
Fairgreen Road					
Galway		Micro			
Date 11/07/2019 10:07	Designed by Fiontan Gallagher	Drainage			
File FOUL DRAINAGE WITH ADDI	Checked by	niamade			
Micro Drainage	Network 2017.1.2				

MH Name F45 F44 F42 F40 1.000 Hor Scale 1500 Ver Scale 200 Datum (m) 1.000 F8.009 F8.008 F8.006 PN Dia (mm) 225 225 225 Slope (1:X) 25.0 55.8 30.0 16.250 13.950 14.900 Cover Level (m) 14.250 16.200 Invert Level (m) 21.900 43.900 Length (m) 31.400

TOBIN Consulting Engineers		Page 16
Fairgreen House		
Fairgreen Road		
Galway		Micro
Date 11/07/2019 10:07	Designed by Fiontan Gallagher	Drainage
File FOUL DRAINAGE WITH ADDI	Checked by	niamade
Micro Drainage	Network 2017.1.2	

MH Name F48 F47 F45 Hor Scale 1500 Ver Scale 200 Datum (m)-3.000PN F8.011 F8.010 Dia (mm) 225 225 Slope (1:X) 150.0 25.0 13.950 10.450 10.600 Cover Level (m) 12.324 Invert Level (m) 30.430 79.800 Length (m)

TOBIN Consulting Engineers		Page 17
Fairgreen House		
Fairgreen Road		4
Galway		Micro
Date 11/07/2019 10:07	Designed by Fiontan Gallagher	Drainage
File FOUL DRAINAGE WITH ADDI	Checked by	nialilade
Micro Drainage	Network 2017.1.2	

MH Name	F55		F51	F48	
					1
		1 0		1-30-01	
		1.0	14 001		
	l				
Hor Scale 1500					
Ver Scale 200					
Datum (m)-6.000					
PN			F8.013	F8.012	
Dia (mm)			225	225	
Slope (1:X)			150.0	150.0	
	õ	00	00	0.0	
Cover Level (m)	000.6	9.000	10.000	10.450	
	σ	9	10	10	
Invert Level (m)		7.148	7.565	8.370	
		7	7.	φ φ	
Length (m)			55.200	23.900	

TOBIN Consulting Engineers		Page 18
Fairgreen House		
Fairgreen Road		
Galway		Micro
Date 11/07/2019 10:07	Designed by Fiontan Gallagher	
File FOUL DRAINAGE WITH ADDI	Checked by	Drainage
Micro Drainage	Network 2017.1.2	

MH Name	F35	F34	
	- 30		
		_	
	F		
		1.002	
	ļ ^S	3.002	
Hor Scale 1500			
Ver Scale 200			
Datum (m) 4.000			
PN		F9.000	
Dia (mm)		150	
Slope (1:X)		50.0	
Cover Level (m)	19.400	20.600	
COVER DEVEL (III)	4.	9.	
	H	2	
	α	0 0	
Invert Level (m)	α α α		
	α.	19.250	
Length (m)		60.600	
neriden (m)		00.000	

TOBIN Consulting Engineers		Page 19
Fairgreen House		
Fairgreen Road		
Galway		Micro
Date 11/07/2019 10:07	Designed by Fiontan Gallagher	
File FOUL DRAINAGE WITH ADDI	Checked by	Drainage
M' D '	27-1 - 1 2017 1 2	•

Micro Drainage Network 2017.1.2 MH Name F39 F38 F37 Hor Scale 1500 Ver Scale 200 Datum (m) 4.000 F10.000 PN F10.001 Dia (mm) 225 225 Slope (1:X) 40.0 40.0 17.900 19.000 19.900 Cover Level (m) 18.475 Invert Level (m) 44.100 34.100 Length (m)

TOBIN Consulting Engineers		Page 20
Fairgreen House		
Fairgreen Road		
Galway		Micro
Date 11/07/2019 10:07	Designed by Fiontan Gallagher	Drainage
File FOUL DRAINAGE WITH ADDI	Checked by	namaye
Micro Drainage	Network 2017.1.2	

MH Name	F44	F43	
		0.00	
		8.008	1
Hor Scale 1500			
nor scare 1300			
Ver Scale 200			
Datum (m) 0.000			
PN		F11.000	
Dia (mm)		225	
Slope (1:X)		55.0	
Cover Level (m)	14.900	15.600	
COAST TEAST (III)	9.	5.	
	Ţ	Ä	
		71	
Invert Level (m)		13.471	
		H H	
Length (m)		27.700	

TOBIN Consulting Engineers		Page 21
Fairgreen House		
Fairgreen Road		
Galway		Micro
Date 11/07/2019 10:07	Designed by Fiontan Gallagher	Drainage
File FOUL DRAINAGE WITH ADDI	Checked by	nialilade
Micro Drainage	Network 2017.1.2	

MH Name	F47	F47	E	746
	8.010)		
Hor Scale 1500				
Ver Scale 200				
Datum (m) -5.000				
PN	F12.		F12.000	
Dia (mm)	15		150	
Slope (1:X)	99.	. 9	60.0	
Cover Level (m)	00	10.550		00
Cover Level (m)	10.600	0.5		11.000
	10	1(H
	<u></u>			0
Invert Level (m)	8.807	9.031		.850
	ω	0 0		o
Length (m)	22.3	3 / U	49.150	1

TOBIN Consulting Engineers		Page 22
Fairgreen House		
Fairgreen Road		4
Galway		Micro
Date 11/07/2019 10:07	Designed by Fiontan Gallagher	Drainage
File FOUL DRAINAGE WITH ADDI	Checked by	nialilade
Micro Drainage	Network 2017.1.2	

MH Name	F51	F50	F49	
		·		
]
		3.012		
		0.012		
	"			
Hor Scale 1500				
Ver Scale 200				
Datum (m) -5.000		T12 001	P12 000	
PN Dia (mm)		F13.001	F13.000	
Slope (1:X)		120.0	60.0	
probe (1.v)				
Cover Level (m)	10.000	9.850	10.250	
	.01	0	0	
Invert Lovel (m)	c	8.240	8.240	
Invert Level (m)		3. 2	8 8	
		&	w	
Length (m)		27.900	39.600	

TOBIN Consulting Engineers	Page 23	
Fairgreen House		
Fairgreen Road		
Galway		Micco
Date 11/07/2019 10:07	Designed by Fiontan Gallagher	Drainage
File FOUL DRAINAGE WITH ADDI	Checked by	Dialilade
Micro Drainage	Network 2017.1.2	

MH Name	F54	F52	
] Ti
	2		
	В. С		
Hor Scale 1500			
1101 20010 1000			
Ver Scale 200			
ver scare 200			
Datum (m)-6.000			
PN		F14.000	
Dia (mm)		150	
Slope (1:X)		60.0	
	00 00	0	
Cover Level (m)	9.000	9.400	
	0 0	٥	
Invent Javal (=)	<u>τ</u>	7.315	
Invert Level (m)	2	2.	
	1.	ĺ	

APPENDIX F

Typical Pumping Station Detail Drawing


08/16 JMC TOC

Initial Issue

SL

0 09/15 JMC TCC

WATER

INDICATIVE SUBMERSIBLE PUMPING STATION

STD-WW-28

2

APPENDIX G

Irish Water Confirmation of Feasibility Correspondence

Barry Duffy

c/o Richard Daly
Tobin Consulting Engineers
1st Floor Fairgreen House
Fairgreen Road
Co. Galway
4 December 2019

Uisce Éireann Bosca OP 448 Oifig Sheachadta na Cathrach Theas Cathair Chorcaí

Irish Water PO Box 448, South City Delivery Office, Cork City.

www.water.ie

Dear Barry Duffy,

Re: Connection Reference No CDS19001343 pre-connection enquiry Rev B - Subject to contract | Contract denied

Connection for Development of 342 unit(s) and Creche at Rosshill, Galway City, Co. Galway.

Irish Water has reviewed your pre-connection enquiry in relation to a water and wastewater connection at Rosshill, Galway City, Co. Galway.

Based upon the details that you have provided with your pre-connection enquiry and on the capacity currently available in the network(s), as assessed by Irish Water, we wish to advise you that, subject to a valid connection agreement being put in place, and subject to the conditions outlined below, your proposed connection to the Irish Water network(s) can be facilitated.

Wastewater Connection:

You have presented in your pre connection enquiry submission the phased breakdown of development proposed. Phases 1 & 2 which comprise of a total of 102 housing units and a crèche can be accommodated by the existing network infrastructure subject to you putting in place a night time pumping regime for the discharge to the Irish Water network.

In order to accommodate the proposed connection of Phases 3 & 4 totalling an additional 240 housing units, upgrade works are required to be delivered at Merlin Park No. 1 Pumping Station to provide additional storage. Irish Water is currently delivering a capital project to provide this additional storage. This project is currently underway and is at site investigation and land owner liaison stage. The project is currently scheduled to be complete by 2024 (subject to change).

It is proposed to connect to the Irish Water network via a pumping station and rising main connection. The proposed pumping station layout should be sized to cater for development on adjoining lands to the south which are currently zoned low residential. The sizing will be confirmed at connection application stage. The proposed development is high density; therefore the densities of future development on the adjoining lands will require to be determined

Water Connection:

The nearest point of connection to the watermain network will be to a 200mm diameter watermain which is being extended to a point north of the railway bridge on the Coast Road. This watermain extension is currently being delivered as part of the development works for a housing development north of the railway on the Coast Road. A connection can be facilitated to this watermain.

Please be aware that Irish Water is now responsible for the delivery of the connection related works in the public domain. The costs and conditions associated with the connection would be detailed in a connection offer at connection application stage.

Irish Water notes that the scale of this development dictates that it is subject to the Strategic Housing Development planning process. in advance of submitting your full application to An Bord Pleanala for assessment, you must have reviewed this development with Irish Water and received a Statement of Design Acceptance in relation to the layout of water and wastewater services.

All infrastructure should be designed and installed in accordance with the Irish Water Codes of Practice and Standard Details. A design proposal for the water and/or wastewater infrastructure should be submitted to Irish Water for assessment. The design proposal can be submitted to cdsdesignga@water.ie

You are advised that this correspondence does not constitute an offer in whole or in part to provide a connection to any Irish Water infrastructure and is provided subject to a connection agreement being signed at a later date.

A connection agreement can be applied for by completing the connection application form available at **www.water.ie/connections**. Irish Water's current charges for water and wastewater connections are set out in the Water Charges Plan as approved by the Commission for Regulation of Utilities.

If you have any further questions, please contact James O'Malley from the design team at jomalley@water.ie. For further information, visit www.water.ie/connections.

Yours sincerely,

M Duyer

Maria O'Dwyer

Connections and Developer Services

APPENDIX H

Irish Water Statement of Design Acceptance

Barry Duffy 1st Floor Fairgreen House Fairgreen Road Co. Galway

3 December 2019

Uisce Éireann Bosca OP 448 Oifig Sheachadta na Cathrach Theas Cathair Chorcal

Irish Water PO Box 448, South City Delivery Office, Cark City.

www.water.ie

Re: Design Submission for Rosshill, Galway City, Co. Galway (the "Development") (the "Design Submission") / Connection Reference No: CDS19001343

Dear Barry Duffy,

Many thanks for your recent Design Submission.

We have reviewed your proposal for the connection(s) at the Development. Based on the information provided, which included the documents outlined in Appendix A to this letter, Irish Water has no objection to your proposals.

This letter does not constitute an offer, in whole or in part, to provide a connection to any Irish Water infrastructure. Before you can connect to our network you must sign a connection agreement with Irish Water. This can be applied for by completing the connection application form at www.water.ie/connections. Irish Water's current charges for water and wastewater connections are set out in the Water Charges Plan as approved by the Commission for Regulation of Utilities (CRU)(https://www.cru.ie/document_group/irish-waters-water-charges-plan-2018/).

You the Customer (including any designers/contractors or other related parties appointed by you) is entirely responsible for the design and construction of all water and/or wastewater infrastructure within the Development which is necessary to facilitate connection(s) from the boundary of the Development to Irish Water's network(s) (the "Self-Lay Works"), as reflected in your Design Submission. Acceptance of the Design Submission by Irish Water does not, in any way, render Irish Water liable for any elements of the design and/or construction of the Self-Lay Works.

If you have any further questions, please contact your Irish Water representative:

Name: James O'Malley Phone: 094 90 43310 Email: jomalley@water.ie

Yours sincerely,

Maria O'Dwyer

M Buyer

Connections and Developer Services

Appendix A

Document Title & Revision

- 10690-2001_Rev F Proposed Drainage and Watermain Layout
- 10690-2002_Rev D Proposed Drainage Part 1
- 10690-2003_Rev D Proposed Drainage Part 2
- 10690-2004_Rev F Proposed Watermain Part 2
- 10690-2005_Rev E Proposed Watermain Part 2

For further information, visit www.water.ie/connections

Notwithstanding any matters listed above, the Customer (including any appointed designers/contractors, etc.) is entirely responsible for the design and construction of the Self-Lay Works. Acceptance of the Design Submission by Irish Water will not, in any way, render Irish Water liable for any elements of the design and/or construction of the Self-Lay Works.

www.tobin.ie

in TOBIN Consulting Engineers

@tobinengineers

GalwayFairgreen House, Fairgreen Road, Galway, H91 AXK8, Ireland. Tel: +353 (0)91 565 211

Dublin Block 10-4, Blanchardstown Corporate Park, Dublin 15, D15 X98N, Ireland. Tel: +353 (0)1 803 0406

Castlebar Market Square, Castlebar,

Mayo, F23 Y427,

Ireland. Tel: +353 (0)94 902 1401

London 17 Bowling Green Lane Clerkenwell London, EC1R0QB, United Kingdom. Tel: (+44) (0)203 915 6301